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Page 105, equation (3.132)
From (3.131) it follows:
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From (3.14) we have F = LF and the first term on right hand side in (1) can
be expressed taking into account also (3.15):
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Note that also the definition of the scalar product of tensors was used: A.B =
trAB”, as well as the fact that D is symmetric whereas W anti-symmetric
tensor, i.e., D = DT and W = —-WT.

The time derivative of temperature gradient can be expressed through
the deformation gradient as indicated by (3.13), i.e.,, by g = gradT =
(Grad T)F~%:

gradT = (GradT) F~! + (GradT) F1 (3)

As stated in the book, FF~!' = 0 (because this is time derivative of unit,
constant, tensor), from which we get:

FF I =FF!{FF1=0 = Fl=_FIFF (4)

Substituting from (2)-(4) into (1) results in:
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The two terms in square brackets can be further modified (after multipli-
cation by df/0g). This procedure will be illustrated on the first term only
which is of the type a. (bC) in the component form:
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The modifications indicated in (6) result in following equalities:
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g—g. [(GradT) (F‘lFF_l)} = (F_lg_é) : [(GfadT) (F‘lF)] .8

Substituting from (7) and (8) into (5) and then into (3.113) gives (3.132).



