The Thermodynamics of Linear Fluids and Fluid Mixtures by Pekař \& Samohýl
Page 105, equation (3.132)
From (3.131) it follows:

$$
\begin{equation*}
\dot{f}=\frac{\partial \bar{f}}{\partial \mathbf{F}} \cdot \dot{\mathbf{F}}+\frac{\partial \bar{f}}{\partial T} \dot{T}+\frac{\partial \bar{f}}{\partial \mathbf{g}} \cdot \dot{\mathbf{g}} \tag{1}
\end{equation*}
$$

From (3.14) we have $\dot{\mathbf{F}}=\mathbf{L F}$ and the first term on right hand side in (1) can be expressed taking into account also (3.15):

$$
\begin{align*}
\frac{\partial \bar{f}}{\partial \mathbf{F}} \cdot \mathbf{L F}= & \frac{\partial \bar{f}}{\partial \mathbf{F}} \cdot(\mathbf{D}+\mathbf{W}) \mathbf{F}=\frac{\partial \bar{f}}{\partial \mathbf{F}} \cdot(\mathbf{D F})+\frac{\partial \bar{f}}{\partial \mathbf{F}} \cdot(\mathbf{W F})=\operatorname{tr} \frac{\partial \bar{f}}{\partial \mathbf{F}}(\mathbf{D F})^{T}+ \\
& \operatorname{tr} \frac{\partial \bar{f}}{\partial \mathbf{F}}(\mathbf{W F})^{T}=\operatorname{tr} \frac{\partial \bar{f}}{\partial \mathbf{F}} \mathbf{F}^{T} \mathbf{D}-\operatorname{tr} \frac{\partial \bar{f}}{\partial \mathbf{F}} \mathbf{F}^{T} \mathbf{W} . \tag{2}
\end{align*}
$$

Note that also the definition of the scalar product of tensors was used: A.B \equiv $\operatorname{tr} \mathbf{A B} \mathbf{B}^{T}$, as well as the fact that \mathbf{D} is symmetric whereas \mathbf{W} anti-symmetric tensor, i.e., $\mathbf{D}=\mathbf{D}^{T}$ and $\mathbf{W}=-\mathbf{W}^{T}$.

The time derivative of temperature gradient can be expressed through the deformation gradient as indicated by (3.13), i.e., by $\mathbf{g} \equiv \operatorname{grad} T=$ $(\operatorname{Grad} T) \mathbf{F}^{-1}$:

$$
\begin{equation*}
\overline{\operatorname{grad} T}=(\overline{\operatorname{Grad} T}) \mathbf{F}^{-1}+(\operatorname{Grad} T) \dot{\mathbf{F}^{-1}} \tag{3}
\end{equation*}
$$

As stated in the book, $\overline{\mathbf{F F}^{-1}}=0$ (because this is time derivative of unit, constant, tensor), from which we get:

$$
\begin{equation*}
\overline{\mathbf{F} \mathbf{F}^{-1}}=\dot{\mathbf{F}} \mathbf{F}^{-1}+\mathbf{F} \dot{\mathbf{F}} \dot{\mathbf{F}}^{-1}=0 \Rightarrow \dot{\overline{\mathbf{F}^{-1}}}=-\mathbf{F}^{-1} \dot{\mathbf{F}} \mathbf{F}^{-1} \tag{4}
\end{equation*}
$$

Substituting from (2)-(4) into (1) results in:

$$
\begin{align*}
\dot{f}= & \operatorname{tr} \frac{\partial \bar{f}}{\partial \mathbf{F}} \mathbf{F}^{T} \mathbf{D}-\operatorname{tr} \frac{\partial \bar{f}}{\partial \mathbf{F}} \mathbf{F}^{T} \mathbf{W}+\frac{\partial \bar{f}}{\partial T} \dot{T}+ \\
& \frac{\partial \bar{f}}{\partial \mathbf{g}} \cdot\left[(\overline{\operatorname{Grad} T}) \mathbf{F}^{-1}-(\operatorname{Grad} T)\left(\mathbf{F}^{-1} \dot{\mathbf{F}} \mathbf{F}^{-1}\right)\right] . \tag{5}
\end{align*}
$$

The two terms in square brackets can be further modified (after multiplication by $\partial \bar{f} / \partial \mathbf{g})$. This procedure will be illustrated on the first term only which is of the type \mathbf{a}.(bC); in the component form:

$$
\begin{align*}
\mathbf{a} \cdot(\mathbf{b C})= & \sum_{i} a^{i}(\mathbf{b C})^{i}=\sum_{i} a^{i} \sum_{j} b^{j} C^{j i}=\sum_{i} \sum_{j} C^{j i} a^{i} b^{j} \equiv \\
& \sum_{i} \sum_{j} C^{i j} a^{j} b^{i}=(\mathbf{C a}) \cdot \mathbf{b} \tag{6}
\end{align*}
$$

The modifications indicated in (6) result in following equalities:

$$
\begin{gather*}
\frac{\partial \bar{f}}{\partial \mathbf{g}} \cdot\left[(\overline{\operatorname{Grad} T}) \mathbf{F}^{-1}\right]=\left(\mathbf{F}^{-1} \frac{\partial \bar{f}}{\partial \mathbf{g}}\right) \cdot \overline{\operatorname{Grad} T} \tag{7}\\
\frac{\partial \bar{f}}{\partial \mathbf{g}} \cdot\left[(\operatorname{Grad} T)\left(\mathbf{F}^{-1} \dot{\mathbf{F}} \mathbf{F}^{-1}\right)\right]=\left(\mathbf{F}^{-1} \frac{\partial \bar{f}}{\partial \mathbf{g}}\right) \cdot\left[(\operatorname{Grad} T)\left(\mathbf{F}^{-1} \dot{\mathbf{F}}\right)\right] . \tag{8}
\end{gather*}
$$

Substituting from (7) and (8) into (5) and then into (3.113) gives (3.132).

