Page 149, Rem. 3, equation (b)

Equation (4.16) is localized using Gauss' theorem to give:

$$
\begin{equation*}
\sum_{\alpha=1}^{n} \frac{\partial \rho_{\alpha}}{\partial t}+\sum_{\alpha=1}^{n} \operatorname{div} \rho_{\alpha} \mathbf{v}_{\alpha}=0 \tag{1}
\end{equation*}
$$

The time derivative follows from the definition (4.21):

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=\frac{\partial}{\partial t} \sum_{\alpha=1}^{n} \rho_{\alpha}=\sum_{\alpha=1}^{n} \frac{\partial \rho_{\alpha}}{\partial t} . \tag{2}
\end{equation*}
$$

Further

$$
\begin{equation*}
\operatorname{div} \rho_{\alpha} \mathbf{v}_{\alpha}=\rho_{\alpha} \operatorname{div} \mathbf{v}_{\alpha}+\mathbf{v}_{\alpha} \cdot \operatorname{grad} \rho_{\alpha} . \tag{3}
\end{equation*}
$$

Using (2) and (3), Eq. (1) is rewritten:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\sum_{\alpha=1}^{n} \rho_{\alpha} \operatorname{div} \mathbf{v}_{\alpha}+\sum_{\alpha=1}^{n} \mathbf{v}_{\alpha} \cdot \operatorname{grad} \rho_{\alpha}=0 . \tag{4}
\end{equation*}
$$

Note that the second term in Eq. (4) appears also in the divergence of the barycentric velocity defined by Eq. (a) in Rem. 3 on page 149:

$$
\begin{equation*}
\operatorname{div} \mathbf{v}^{w}=\operatorname{div} \sum_{\alpha=1}^{n} w_{\alpha} \mathbf{v}_{\alpha}=(1 / \rho) \sum_{\alpha=1}^{n} \rho_{\alpha} \operatorname{div} \mathbf{v}_{\alpha}+\sum_{\alpha=1}^{n} \mathbf{v}_{\alpha} \cdot \operatorname{grad} w_{\alpha} . \tag{5}
\end{equation*}
$$

An expression resembling the third term in Eq. (4) appears in the following scalar product involving the barycentric velocity:

$$
\begin{equation*}
\mathbf{v}^{w} \cdot \operatorname{grad} \rho=\sum_{\alpha=1}^{n} w_{\alpha} \mathbf{v}_{\alpha} \cdot \operatorname{grad} \rho . \tag{6}
\end{equation*}
$$

The first term in (5) can be trivially modified as follows:

$$
\begin{equation*}
\rho(1 / \rho) \sum_{\alpha=1}^{n} \rho_{\alpha} \operatorname{div} \mathbf{v}_{\alpha}=\sum_{\alpha=1}^{n} \rho_{\alpha} \operatorname{div} \mathbf{v}_{\alpha} . \tag{7}
\end{equation*}
$$

The second term in (5) contains gradient of mass fraction; from its definition (4.22) follows that $\operatorname{grad}\left(\rho w_{\alpha}\right)=\operatorname{grad} \rho_{\alpha}$ and thus:

$$
\begin{equation*}
\rho \operatorname{grad} w_{\alpha}+w_{\alpha} \operatorname{grad} \rho=\operatorname{grad} \rho_{\alpha} . \tag{8}
\end{equation*}
$$

From (8) it follows that

$$
\begin{equation*}
\operatorname{grad} w_{\alpha}=(1 / \rho) \operatorname{grad} \rho_{\alpha}-\left(w_{\alpha} / \rho\right) \operatorname{grad} \rho . \tag{9}
\end{equation*}
$$

Substitution from (7) and (9) into (5) multiplied by the mixture density gives:

$$
\begin{align*}
\rho \operatorname{div} \mathbf{v}^{w} & =\sum_{\alpha=1}^{n} \rho_{\alpha} \operatorname{div} \mathbf{v}_{\alpha}+\rho \sum_{\alpha=1}^{n} \mathbf{v}_{\alpha} \cdot\left[(1 / \rho) \operatorname{grad} \rho_{\alpha}-\left(w_{\alpha} / \rho\right) \operatorname{grad} \rho\right] \\
& =\sum_{\alpha=1}^{n} \rho_{\alpha} \operatorname{div} \mathbf{v}_{\alpha}+\sum_{\alpha=1}^{n} \mathbf{v}_{\alpha} \cdot \operatorname{grad} \rho_{\alpha}-\sum_{\alpha=1}^{n} w_{\alpha} \mathbf{v}_{\alpha} \cdot \operatorname{grad} \rho . \tag{10}
\end{align*}
$$

Summing up (10) and (6) gives:

$$
\begin{equation*}
\rho \operatorname{div} \mathbf{v}^{w}+\mathbf{v}^{w} \cdot \operatorname{grad} \rho=\sum_{\alpha=1}^{n} \rho_{\alpha} \operatorname{div} \mathbf{v}_{\alpha}+\sum_{\alpha=1}^{n} \mathbf{v}_{\alpha} \cdot \operatorname{grad} \rho_{\alpha} \tag{11}
\end{equation*}
$$

Using (11) and definition (c) in Rem. 3 on page 149, Eq. (4) can be rewritten:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\mathbf{v}^{w} \cdot \operatorname{grad} \rho+\rho \operatorname{div}^{w} \equiv \dot{\rho}+\rho \operatorname{div}^{w}=0 \tag{12}
\end{equation*}
$$

Eq. (12) gives Eq. (b) in the same Rem.

