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Alternative derivations of restrictions on kinetics

Chapter 4.7 presents some thermodynamic restrictions on kinetics (reac-
tion rates), see especially p. 211. They can be derived in alternative ways
which are described below1 and can serve also as an exercise for interested
and inquiring readers.

Procedure A
First, we remind that the derivation in the book begins with the definition

of ”strong” equilibrium as given by (4.311) and explored in footnote 22 on
page 211. This starting point is retained here.

As explained in footnote 22 on page 211, the function Π̃0(T,B
σ, Ar) has

in the equilibrium defined by (4.311) zero and minimum value (at any equi-
librium values of T and Bσ which are denoted by the superscript o as in
the book). Consequently, the function and its first and second derivatives
with respect to (chemical) affinities must have the following properties (in
equilibrium):

Π̃0(T
o, Bσo, 0) = 0, (1)

∂Π̃0(T
o, Bσo, 0)

∂Ar
= 0; r = 1, . . . , n− h (2)

and the matrix

∂2Π̃0(T
o, Bσo, 0)

∂Ar∂Ap
(r, p = 1, . . . , n− h) (3)

must be positive semidefinite. Condition (1) is fulfilled trivially:

Π̃0(T
o, Bσo, 0) =

n−h∑
p=1

0 J̃p(T
o, Bσo, 0) = 0. (4)

The derivative in condition (2) is (for some superscript s ; s = 1, . . . , n−h):

∂Π̃0

∂As
=

n−h∑
p=1

(
∂Ap

∂As
J̃p + Ap

n−h∑
r=1

∂J̃p
∂Ar

∂A
r

∂As

)

= J̃s(T,B
σ, Ar) +

n−h∑
p=1

Ap
∂J̃p(T,B

σ, Ar)

∂As
. (5)

1This text is based on notes by I. Samohýl which he had never published.
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As stated above, all affinities vanish in equilibrium and (2) with (5) give

J̃s(T
o, Bσo, 0) = 0; s = 1, . . . , n− h, (6)

i.e., in the equilibrium defined by the vanishing affinities of all independent
reactions also all rates of these reactions are zero.

To get some results from the condition around (3) the second derivatives
should be calculated starting from (5):

∂2Π̃0

∂As∂At
=
∂J̃s
∂At

+
n−h∑
p=1

∂Ap

∂At
∂J̃p
∂As

+ Ap
n−h∑
r=1

∂2J̃p
∂As∂Ar

∂Ar

∂At

=
∂J̃s(T,B

σ, Ar)

∂At
+
∂J̃t(T,B

σ, Ar)

∂As
+

n−h∑
p=1

Ap
∂2J̃p(T,B

σ, Ar)

∂As∂At
. (7)

Using (7) in the condition (3) we obtain that in the equilibrium defined by
the vanishing affinities the matrix with the elements

∂J̃s(T
o, Bσo, 0)

∂At
+
∂J̃t(T

o, Bσo, 0)

∂As
; s, t, . . . , n− h (8)

must be positive semidefinite. In other words, the symmetrized matrix with
the elements

∂J̃(s
∂At)

=
1

2

(
∂J̃s
∂At

+
∂J̃t
∂As

)
; s, t, . . . , n− h (9)

must be positive semidefinite in the equilibrium

∂J̃(s(T
o, Bσo, 0)

∂At)
; s, t, . . . , n− h. (10)

This is the same result as that which follows from equation (e) in footnote
22 on page 211 in the book – the quadratic form in this equation is positive
semidefinite, consequently, also its symmetrized matrix is positive semidef-
inite (see also note on matrices at the end of this text). Results (6) and
(10) are valid for any values of T,Bσ at Ar = 0 (T o, Bσo), r = 1, . . . , n − h,
generally.

Procedure B
Let us define Π0 as a function2 of a real parameter λ as follows:

Π̄0(λ) ≡ Π̄0(T,B
σ, λAp) =

n−h∑
r=1

λArJ̄r(T,B
σ, λAp) (11)

2Cf. also equation (a) in footnote 22 on page 211 in the book.
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for any T > 0 and any real Bσ and Ap.
Equilibrium (4.311) may be now expressed in terms of the parameter λ

as
λ = 0 (12)

at any values of T,Bσ, Ap (the superscript symbol o is superfluous in this
part). The condition of zero and minimum value of Π̄0 at equilibrium can be
expressed as

Π̄0(T,B
σ, λAp)|λ=0 = 0 (13)

dΠ̄0(T,B
σ, λAp)

dλ

∣∣∣
λ=0

= 0 (14)

d2Π̄0(T,B
σ, λAp)

dλ2

∣∣∣
λ=0
≥ 0 (15)

which are valid for any values of T and Bσ, and fixed but arbitrary Ap.
Upon inserting definition (11) into (13) it is seen that (13) is fulfilled

trivially:

Π̄0(T,B
σ, λAp)|λ=0 =

n−h∑
r=1

λArJ̄r(T,B
σ, λAp)|λ=0 = 0. (16)

The first derivative of the function (11) is:

dΠ̄0

dλ
=

n−h∑
r=1

(
ArJ̄r(T,B

σ, λAp) + λAr
n−h∑
p=1

Ap
∂J̄r(T,B

σ, λAp)

∂Ap

)
(17)

and from it we obtain the necessary condition for minimum (14) in the form:

dΠ̄0

dλ

∣∣∣
λ=0

=
n−h∑
r=1

ArJ̄r(T,B
σ, 0) = 0. (18)

Equality (18) should be valid for any Ar, consequently, rates of all indepen-
dent reactions should vanish in equilibrium:

J̄r(T,B
σ, 0) = 0; r = 1, . . . , n− h, (19)

which is equivalent to the result (6).
The second derivative of the function (11) is obtained by differentiation

of (17):

d2Π̄0

dλ2
=

n−h∑
r=1

(
Ar

n−h∑
p=1

Ap
∂J̄r(T,B

σ, λAp)

∂Ap
+ Ar

n−h∑
p=1

Ap
∂J̄r(T,B

σ, λAp)

∂Ap
+

+ λAr
n−h∑
p=1

Ap
n−h∑
s=1

As
∂2J̄r(T,B

σ, λAs

∂ApAs

)
. (20)
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Thus, the sufficient condition of the minimum (15) is:

d2Π̄0

dλ2

∣∣∣
λ=0

= 2
n−h∑
r=1

n−h∑
p=1

ArAp
∂J̄r(T,B

σ, 0)

∂Ap
≥ 0. (21)

Therefore, the following quadratic form is positive semidefinite in equilibrium
defined by (12) (or (4.311)):

n−h∑
r=1

n−h∑
p=1

ArAp
∂J̄r(T,B

σ, 0)

∂Ap
≥ 0. (22)

Equation (22) is equivalent to equation (e) in footnote 22 on page 211 in the
book.

Note on derivatives of reaction rates
Results (6) or (19) are valid at any T,Bσ (values in equilibrium). In other

words, regardless the values of T,Bσ in equilibrium, the reaction rates have
the same (zero) value in equilibrium. That is the rates are independent of
T,Bσ in equilibrium:

∂J̃r(T
o, Bσo, 0)

∂T
= 0,

∂J̃r(T
o, Bσo, 0)

∂Bσ
= 0, r = 1, . . . , n− h.

Note on matrices
Matrix of quadratic form (22), of course, taken in equilibrium Ap = 0 at

any T, Bσ, can be decomposed to symmetric and skew-symmetric parts as
follows:

∂J̄r
∂Ap

=
∂J̄(r
∂Ap)

+
∂J̄[r
∂Ap]

(23)

where the skew-symmetric part is defined by (cf. (9))

∂J̄[r
∂Ap]

≡ 1

2

( ∂J̄r
∂Ap

− ∂J̄p
∂Ar

)
; r, p = 1, . . . , n− h. (24)

Inserting the decomposition into (22) we obtain:

n−h∑
r=1

n−h∑
p=1

ArAp
∂J̄(r(T,B

σ, 0)

∂Ap)
≥ 0 (25)

because the skew-symmetric parts cancel. Therefore, the symmetrized matrix
of the positive semidefinite form (22) is positive semidefinite in equilibrium
defined by Ap = 0 at any T, Bσ; this is the same result as (10).

4


