Page 70, equation (3.14)

Definition (3.7) shows that the velocity is defined on the basis of the function (3.1) which is a function of the type (3.4). Equation (3.2) shows that the variable \mathbf{X} occurring in these functions can be expressed as a function of \mathbf{x} (and of t). The gradient "grad" is defined in term of derivative with respect to \mathbf{x}, which can be in the case of the function (3.4) expressed using the chain rule. All these considerations can be put into symbols as follows.

$$
\begin{aligned}
\operatorname{grad} \mathbf{v}= & \frac{\partial \mathbf{v}}{\partial \mathbf{x}}=\frac{\partial \mathbf{v}}{\partial \mathbf{X}} \frac{\partial \mathbf{X}}{\partial \mathbf{x}}=\frac{\partial \mathbf{v}}{\partial \mathbf{X}} \frac{\partial \underline{\chi}^{-1}(\mathbf{x}, t)}{\partial \mathbf{x}} \equiv \frac{\partial \mathbf{v}}{\partial \mathbf{X}} \mathbf{F}^{-1}=\frac{\partial^{2} \underline{\chi}(\mathbf{X}, t)}{\partial \mathbf{X} \partial t} \mathbf{F}^{-1}= \\
& \frac{\partial}{\partial t}\left(\frac{\partial \underline{\chi}(\mathbf{X}, t)}{\partial \mathbf{X}}\right) \mathbf{F}^{-1} \equiv \dot{\mathbf{F}} \mathbf{F}^{-1} .
\end{aligned}
$$

