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Page 70, equation (3.17)
It is sufficient to show the derivation for the case det F > 0.
Cf. also Footnote 4 on page 70 in the book.
Eq. (3.5) tells us that J is the following partial derivative:
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which can be expressed:
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(Einstein summation convention is used in the third expression). The ex-
pression 9.J/0F" is the derivative of determinant with respect to one of its

elements: ddet F/O0F". Remind that tensor A can be expanded in minors
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for arbitrary 4, j. Then
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Remember also that inverse of A is related to determinant as follows:
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where the cofactor Cy; = (—1)*7M,; and so A~"Y = C};/det A and, finally,
it follows from (2):
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Capitalizing on (1) and (3) we can write for the partial derivative:
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Successive substitution of (3.12), (3.14) and (3.16) into (4) gives:
J=Jtr(FF ) =JtrL = Jdivv
and this is (3.17).



