The Thermodynamics of Linear Fluids and Fluid Mixtures by Pekař \& Samohýl
Page 70, equation (3.17)
It is sufficient to show the derivation for the case $\operatorname{det} \mathbf{F}>0$.
Cf. also Footnote 4 on page 70 in the book.
Eq. (3.5) tells us that J is the following partial derivative:

$$
\dot{J}=\frac{\partial J(\mathbf{X}, t)}{\partial t}
$$

which can be expressed:

$$
\begin{equation*}
\frac{\partial J(\mathbf{X}, t)}{\partial t}=\frac{\partial J}{\partial \mathbf{F}} \cdot \frac{\partial \mathbf{F}(\mathbf{X}, t)}{\partial t}=\frac{\partial J}{\partial F^{i J}} \frac{\partial F^{i J}}{\partial t}=\operatorname{tr}\left[\frac{\partial J}{\partial \mathbf{F}}\left(\frac{\partial \mathbf{F}}{\partial t}\right)^{T}\right] \tag{1}
\end{equation*}
$$

(Einstein summation convention is used in the third expression). The expression $\partial J / \partial F^{i J}$ is the derivative of determinant with respect to one of its elements: $\partial \operatorname{det} \mathbf{F} / \partial F^{i J}$. Remind that tensor \mathbf{A} can be expanded in minors $M_{i j}$:

$$
\operatorname{det} \mathbf{A}=\sum_{j}(-1)^{i+j} A^{i j} M_{i j}
$$

for arbitrary i, j. Then

$$
\begin{equation*}
\frac{\partial \operatorname{det} \mathbf{A}}{\partial A^{i j}}=(-1)^{i+j} M_{i j} . \tag{2}
\end{equation*}
$$

Remember also that inverse of \mathbf{A} is related to determinant as follows:

$$
\mathbf{A}^{-1}=\frac{1}{\operatorname{det} \mathbf{A}}\left[\begin{array}{cccc}
C_{11} & C_{21} & \ldots & C_{n 1} \\
C_{12} & C_{22} & \ldots & C_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
C_{1 n} & C_{2 n} & \ldots & C_{n n}
\end{array}\right]
$$

where the cofactor $C_{i j}=(-1)^{i+j} M_{i j}$ and so $A^{-1^{i j}}=C_{j i} / \operatorname{det} \mathbf{A}$ and, finally, it follows from (2):

$$
\begin{equation*}
\frac{\partial \operatorname{det} \mathbf{A}}{\partial A^{i j}}=\operatorname{det} \mathbf{A} A^{-1^{j i}} \Rightarrow \frac{\partial \operatorname{det} \mathbf{A}}{\partial \mathbf{A}}=(\operatorname{det} \mathbf{A})\left(\mathbf{A}^{-1}\right)^{T} \tag{3}
\end{equation*}
$$

Capitalizing on (1) and (3) we can write for the partial derivative:

$$
\begin{equation*}
\dot{J}=\operatorname{tr}\left[\operatorname{det} \mathbf{F}\left(\mathbf{F}^{-1}\right)^{T}\left(\frac{\partial \mathbf{F}}{\partial t}\right)^{T}\right]=\operatorname{det} \mathbf{F} \operatorname{tr}\left(\frac{\partial \mathbf{F}}{\partial t} \mathbf{F}^{-1}\right) . \tag{4}
\end{equation*}
$$

Successive substitution of (3.12), (3.14) and (3.16) into (4) gives:

$$
\dot{J}=J \operatorname{tr}\left(\dot{\mathbf{F}} \mathbf{F}^{-1}\right)=J \operatorname{tr} \mathbf{L}=J \operatorname{div} \mathbf{v}
$$

and this is (3.17).

