The Thermodynamics of Linear Fluids and Fluid Mixtures by Pekař \& Samohýl

Exercise 1 to section 3.4

Explain the symbol vT which appears in equation (3.106).
Try to answer before continuing reading.
Equation (3.106) is a result of applying Gauss' theorem on (3.105). Evidently, the term in (3.105) containing $\mathbf{v} . \mathbf{T n}$ is the source of the term $\mathbf{v T}$ in (3.106).

Gauss' theorem transforms surface integral $\int_{\partial \mathcal{V}}$ b.n $\mathrm{d} a$ into volume integral $\int_{\mathcal{V}} \operatorname{divb} \mathrm{d} v$. The term \mathbf{v}. Tn is scalar product of two vectors, one of which is $\mathbf{T n}$. This product should be expressed in terms of scalar product with the vector \mathbf{n}.

The components of $\mathbf{T n}$ are:

$$
\sum_{j} T^{1 j} n^{j} ; \sum_{j} T^{2 j} n^{j} ; \sum_{j} T^{3 j} n^{j} .
$$

The scalar product v.Tn is:

$$
\begin{aligned}
\mathbf{v . T n}= & v^{1}(\mathbf{T n})^{1}+v^{2}(\mathbf{T n})^{2}+v^{3}(\mathbf{T n})^{3}= \\
& v^{1} \sum_{j} T^{1 j} n^{j}+v^{2} \sum_{j} T^{2 j} n^{j}+v^{3} \sum_{j} T^{3 j} n^{j}= \\
& \sum_{i} v^{i} T^{i 1} n^{1}+\sum_{i} v^{i} T^{i 2} n^{2}+\sum_{i} v^{i} T^{i 3} n^{3} .
\end{aligned}
$$

We can thus write

$$
\mathrm{v} \cdot \mathbf{T n}=(\mathrm{vT}) \cdot \mathrm{n}
$$

where the i-th component of the vector $\mathbf{v T}$ is $(\mathbf{v T})^{i}=\sum_{j} v^{j} T^{j i}$. Gauss' theorem transformation of the appropriate term in (3.105) can be then written

$$
\int_{\partial \mathcal{V}} \mathbf{v} \cdot \mathbf{T n} \mathrm{d} a \equiv \int_{\partial \mathcal{V}}(\mathbf{v T}) \cdot \mathbf{n} \mathrm{d} a=\int_{\mathcal{V}} \operatorname{div}(\mathbf{v T}) \mathrm{d} v .
$$

