Page 93, equation (3.92)

First, let us remind of the definition of divergence for a second-order tensor:

$$
\begin{equation*}
(\operatorname{div} \mathbf{A})^{i}=\sum_{k} \frac{\partial A^{i k}}{\partial x^{k}} \tag{1}
\end{equation*}
$$

and a third-order tensor:

$$
\begin{equation*}
(\operatorname{div} \mathbf{B})^{i j}=\sum_{k} \frac{\partial B^{i j k}}{\partial x^{k}} \tag{2}
\end{equation*}
$$

(note that the results is second-order tensor - divergence is a contraction operation).

Second, note that outer product of a vector (a) and a second-order tensor (A) is a third-order tensor with elements

$$
(\mathbf{a} \wedge \mathbf{A})^{i j k}=a^{i} A^{j k}-a^{j} A^{i k}
$$

and thus

$$
\begin{equation*}
[(\mathbf{x}-\mathbf{y}) \wedge \mathbf{T}]^{i j k}=(\mathbf{x}-\mathbf{y})^{i} T^{j k}-(\mathbf{x}-\mathbf{y})^{j} T^{i k} \tag{3}
\end{equation*}
$$

Finally, taking into consideration (3) and (2) and employing (1):

$$
\begin{aligned}
\{\operatorname{div}[(\mathbf{x}-\mathbf{y}) \wedge \mathbf{T}]\}^{i j} & =\sum_{k} \frac{\partial}{\partial x^{k}}\left[(x-y)^{i} T^{j k}-(x-y)^{j} T^{i k}\right] \\
& =\sum_{k}\left[T^{j k} \frac{\partial(x-y)^{i}}{\partial x^{k}}+(x-y)^{i} \frac{\partial T^{j k}}{\partial x^{k}}\right] \\
& -\sum_{k}\left[T^{i k} \frac{\partial(x-y)^{j}}{\partial x^{k}}+(x-y)^{j} \frac{\partial T^{i k}}{\partial x^{k}}\right] \\
& =T^{j i}+(x-y)^{i} \sum_{k} \frac{\partial T^{j k}}{\partial x^{k}}-T^{i j}-(x-y)^{j} \sum_{k} \frac{\partial T^{i k}}{\partial x^{k}} \\
& \equiv T^{j i}+(x-y)^{i}(\operatorname{div} \mathbf{T})^{j}-T^{i j}-(x-y)^{j}(\operatorname{div} \mathbf{T})^{i} \\
& =T^{j i}-T^{i j}+[(\mathbf{x}-\mathbf{y}) \wedge \operatorname{div} \mathbf{T}]^{i j}
\end{aligned}
$$

and changing the notation to general vector-tensor symbols, (3.92) follows.

