Exercise 1 to section 3.2^{1}

The rigid motion can be expressed generally in the form $\mathbf{x}=\boldsymbol{\Gamma}(t) \mathbf{X}+\boldsymbol{\gamma}(t)$ where $\boldsymbol{\Gamma}(t)$ is the orthogonal tensor function of time (cf. exercise 3 to sect. 3.1). Find such change of frame functions $\mathbf{Q}(t)$ and $\mathbf{c}(t)$ (cf. p. 74) that the change of frame gives zero velocity \mathbf{v}. Try to answer before continuing reading.

The velocity transformation in the case of rigid motion is obtained substituting its above definition into (3.35):

$$
\begin{equation*}
\mathbf{v}^{*}=\mathbf{Q v}+\dot{\mathbf{c}}+\dot{\mathbf{Q}} \mathbf{x}=\mathbf{Q v}+\dot{\mathbf{c}}+\dot{\mathbf{Q}}(\boldsymbol{\Gamma} \mathbf{X}+\gamma) . \tag{1}
\end{equation*}
$$

From definitions of velocity and motion, (3.7) and (3.1), respectively, it follows that $\mathbf{v}=\underline{\dot{\chi}}=\dot{\mathbf{x}}$; upon combination with the general expression for the rigid motion we have:

$$
\begin{equation*}
\mathrm{v}=\dot{\Gamma} \mathbf{X}+\Gamma \dot{\mathrm{X}}+\dot{\gamma} \tag{2}
\end{equation*}
$$

Substituting (2) into (1) together with the requirement of zero transformed velocity results in:

$$
\begin{align*}
0 & =\mathrm{Q} \dot{\mathrm{\Gamma}} \mathrm{X}+\mathrm{Q} \Gamma \dot{\mathrm{X}}+\mathrm{Q} \dot{\gamma}+\dot{\mathbf{c}}+\dot{\mathrm{Q}} \Gamma \mathrm{X}+\dot{\mathrm{Q}} \gamma \\
& =(\mathrm{Q} \dot{\mathrm{\Gamma}}+\dot{\mathrm{Q}} \Gamma) \mathrm{X}+\mathrm{Q} \Gamma \dot{\mathrm{X}}+\dot{\mathbf{Q} \gamma}+\dot{\mathrm{c}} \\
& =\dot{\mathbf{Q} \Gamma} \mathbf{X}+\dot{\mathrm{Q} \gamma}+\dot{\mathbf{c}} \tag{3}
\end{align*}
$$

where we used the fact that time derivative of particle \mathbf{X} is zero.
Tensor \mathbf{Q} is orthogonal, which, by definition, means that $\mathbf{Q Q}^{T}=\mathbf{1}$ and from this:

$$
\begin{equation*}
\overline{\mathbf{Q Q}^{T}}=\mathbf{0} . \tag{4}
\end{equation*}
$$

Comparing (4) and (3) it is seen that (3) is fulfilled when $\boldsymbol{\Gamma}=\mathbf{Q}^{T}$ and $\mathbf{c}=-\mathbf{Q} \boldsymbol{\gamma}$. Thus, the answer to this exercise is as follows:

$$
\mathbf{Q}=\boldsymbol{\Gamma}^{T}, \quad \mathbf{c}=-\boldsymbol{\Gamma}^{T} \gamma
$$

[^0]
[^0]: ${ }^{1}$ Based on I. Samohýl: Irreversible Thermodynamics. Prague: University of Chemical Technology, 1998 (in Czech).

