Exercise 3 to section 3.8 ${ }^{1}$

Derive the (differential) formula for the change of the ideal gas pressure with the distance from the rotor axis in a centrifuge under equilibrium (in the centrifugal field).

Calculate the equilibrium pressure of ideal gas at the outer edge of a centrifuge with the diameter of 10 cm , filled with nitrogen at $25^{\circ} \mathrm{C}$, rotating at $90000 \mathrm{rev} / \mathrm{min}$; the pressure at the rotor axis is 100 kPa .

Try to answer before continuing reading.
The equilibrium condition is given by (3.228). Body forces can be neglected $(\mathbf{b}=\mathbf{o})$. Acceleration in the frame connected with the rotor is given by (3.47).

The origin of the coordinate axis Nr. 1* is located in the rotor center and rotates with the centrifuge (rotor; the no-asterisk frame is fixed). We are thus interested (only) in the coordinate corresponding to this axis; let us denote this coordinate without the axis number (and asterisk) simply as x. See also the figure.

Then the relevant acceleration component i^{1} is given by what follows from (3.47):

$$
i^{1}=\omega^{2} x
$$

[^0]Inserting it into the condition (3.228) and using the ideal gas state equation we have

$$
\frac{\partial P}{\partial x} \equiv \frac{\mathrm{~d} P}{\mathrm{~d} x}=\rho \omega^{2} x=\frac{P M}{R T} \omega^{2} x .
$$

Rearranging gives the final formula:

$$
\begin{equation*}
\frac{\mathrm{d} \ln P}{\mathrm{~d} x}=\frac{M \omega^{2}}{R T} x . \tag{1}
\end{equation*}
$$

Answer to the numerical part. After integrating (1) from the center (where the pressure is P_{0}) to the position x we obtain the necessary formula:

$$
\ln \frac{P}{P_{0}}=\frac{M \omega^{2}}{2 R T} x .
$$

Result: 350.5 kPa .

[^0]: ${ }^{1}$ Based on I. Samohýl: Irreversible Thermodynamics. Prague: University of Chemical Technology, 1998 (in Czech).

