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Exercise 3 to section 3.7.! Navier-Stokes equation

Take the divergence of the stress tensor of the linear fluid, substitute
it into momentum balance and derive the Navier-Stokes equation for the
velocity field. Also find its simplifications — incompressible fluid, Euler (non-
viscous fluid) and hydrostatics equations.

Try to answer before continuing reading.

The stress tensor is given by (3.195), substitution from (3.188) gives:

T = —P1+ ((trD)1 + 27D = —P1 + (( — 21/3)(txD)1 + 27D. (1)

The divergence of (1) contains three members. The first member is
—divP1 which, as easily seen, is —gradP; remember that divergence of a
tensor (A) is a vector with components:
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The second member is (¢ —2n/3)div[(trD)1]. Equation (3.16) shows that
trD = divv. The term (divv)1 is a tensor with components:
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where §% is Kronecker’s symbol. Then, div[(divv)1] is a vector with compo-
nents, cf. (2):

{div[(divv)1]} = aii (> g—ﬁ); (4)
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for example, its second component is as follows:
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Remind that
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and thus 5di
(grad divv)’ = 8;‘7' (5)

!Based on I. Samohyl: Irreversible Thermodynamics. Prague: University of Chemical
Technology, 1998 (in Czech).



Summarizing the development between (3) and (5) we see that the second
term can be rewritten using

div[(trD)1] = grad divv. (6)

The third member contains divD. The components of D are, cf. (3.15)
and (3.14):
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consequently, components of the vector divD are:
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= §(div gradv)’ + §(grad divv)". (7)
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Deriving (7), remember that gradv is tensor with components
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Collecting all the three divergence members giVGS'

(gradv)”

divT = —gradP + (¢ — 2n/3)grad divv + 277 (d1V gradv + grad divv)
= —gradP + (( +n/3)grad divv + 7 d1v gradv. (8)

Substituting from (8) into momentum balance (3.78), the Navier-Stokes
equation results:

pv = —gradP + (¢ + n/3)grad divv + n div gradv + p(b + 1). 9)

In the case of incompressible fluid divv = 0 (called also isochoric flow)
and (9) is simplified to:

pv = —grad P + ndiv gradv + p(b + i). (10)

The non-viscous fluid is described by zero viscosity coefficients (¢, 7); then
Euler equation follows from (9):

pv = —gradP + p(b +1i). (11)

In the special case of hydrostatics, i.e. non-flowing fluid (v = o) we have
from (9):
gradP = p(b + 1) (12)

which is the same equation as (3.228) (why?).
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