## Exercise 3 to section 3.7. ${ }^{1}$ Navier-Stokes equation

Take the divergence of the stress tensor of the linear fluid, substitute it into momentum balance and derive the Navier-Stokes equation for the velocity field. Also find its simplifications - incompressible fluid, Euler (nonviscous fluid) and hydrostatics equations.

Try to answer before continuing reading.
The stress tensor is given by (3.195), substitution from (3.188) gives:

$$
\begin{equation*}
\mathbf{T}=-P \mathbf{1}+\zeta(\operatorname{tr} \mathbf{D}) \mathbf{1}+2 \eta \mathbf{D}=-P \mathbf{1}+(\zeta-2 \eta / 3)(\operatorname{tr} \mathbf{D}) \mathbf{1}+2 \eta \mathbf{D} \tag{1}
\end{equation*}
$$

The divergence of (1) contains three members. The first member is $-\operatorname{div} P 1$ which, as easily seen, is $-\operatorname{grad} P$; remember that divergence of a tensor $(\mathbf{A})$ is a vector with components:

$$
\begin{equation*}
(\operatorname{div} \mathbf{A})^{i}=\sum_{j} \frac{\partial A^{i j}}{\partial x^{j}} \tag{2}
\end{equation*}
$$

The second member is $(\zeta-2 \eta / 3) \operatorname{div}[(\operatorname{tr} \mathbf{D}) \mathbf{1}]$. Equation (3.16) shows that $\operatorname{tr} \mathbf{D}=\operatorname{div} \mathbf{v}$. The term $(\operatorname{div} \mathbf{v}) \mathbf{1}$ is a tensor with components:

$$
\begin{equation*}
[(\operatorname{div} \mathbf{v}) \mathbf{1}]^{i j}=\sum_{k} \frac{\partial v^{k}}{\partial x^{k}} \delta^{i j} \tag{3}
\end{equation*}
$$

where $\delta^{i j}$ is Kronecker's symbol. Then, $\operatorname{div}[(\operatorname{divv}) \mathbf{1}]$ is a vector with components, cf. (2):

$$
\begin{equation*}
\{\operatorname{div}[(\operatorname{divv}) \mathbf{1}]\}^{i}=\frac{\partial}{\partial x^{i}}\left(\sum_{k} \frac{\partial v^{k}}{\partial x^{k}}\right) ; \tag{4}
\end{equation*}
$$

for example, its second component is as follows:

$$
\frac{\partial^{2} v^{1}}{\partial x^{2} \partial x^{1}}+\frac{\partial^{2} v^{2}}{\partial\left(x^{2}\right)^{2}}+\frac{\partial^{2} v^{3}}{\partial x^{2} \partial x^{3}} .
$$

Remind that

$$
\operatorname{div} \mathbf{v}=\frac{\partial v^{1}}{\partial x^{1}}+\frac{\partial v^{2}}{\partial x^{2}}+\frac{\partial v^{3}}{\partial x^{3}}
$$

and thus

$$
\begin{equation*}
(\operatorname{grad} \operatorname{divv})^{i}=\frac{\partial \operatorname{div} \mathbf{v}}{\partial x^{i}} \tag{5}
\end{equation*}
$$

[^0]Summarizing the development between (3) and (5) we see that the second term can be rewritten using

$$
\begin{equation*}
\operatorname{div}[(\operatorname{tr} \mathbf{D}) \mathbf{1}]=\operatorname{grad} \operatorname{div} \mathbf{v} \tag{6}
\end{equation*}
$$

The third member contains divD. The components of $\mathbf{D}$ are, cf. (3.15) and (3.14):

$$
D^{i j}=\frac{1}{2}\left(\frac{\partial v^{i}}{\partial x^{j}}+\frac{\partial v^{j}}{\partial x^{i}}\right),
$$

consequently, components of the vector divD are:

$$
\begin{align*}
(\operatorname{div} \mathbf{D})^{i} & =\sum_{j} \frac{\partial D^{i j}}{\partial x^{j}}=\frac{1}{2} \sum_{j} \frac{\partial}{\partial x^{j}}\left(\frac{\partial v^{i}}{\partial x^{j}}+\frac{\partial v^{j}}{\partial x^{i}}\right)=\frac{1}{2} \sum_{j}\left(\frac{\partial^{2} v^{i}}{\partial\left(x^{j}\right)^{2}}+\frac{\partial^{2} v^{j}}{\partial x^{j} \partial x^{i}}\right) \\
& =\frac{1}{2}\left(\frac{\partial^{2} v^{i}}{\partial\left(x^{1}\right)^{2}}+\frac{\partial^{2} v^{i}}{\partial\left(x^{2}\right)^{2}}+\frac{\partial^{2} v^{i}}{\partial\left(x^{3}\right)^{2}}+\frac{\partial^{2} v^{1}}{\partial x^{1} \partial x^{i}}+\frac{\partial^{2} v^{2}}{\partial x^{2} \partial x^{i}}+\frac{\partial^{2} v^{3}}{\partial x^{3} \partial x^{i}}\right) \\
& =\frac{1}{2}(\operatorname{div} \operatorname{grad} \mathbf{v})^{i}+\frac{1}{2}(\operatorname{grad} \operatorname{div} \mathbf{v})^{i} . \tag{7}
\end{align*}
$$

Deriving (7), remember that gradv is tensor with components

$$
(\operatorname{grad} \mathbf{v})^{i j}=\frac{\partial v^{i}}{\partial x^{j}} .
$$

Collecting all the three divergence members gives:

$$
\begin{align*}
\operatorname{div} \mathbf{T} & =-\operatorname{grad} P+(\zeta-2 \eta / 3) \operatorname{grad} \operatorname{div} \mathbf{v}+2 \eta \frac{1}{2}(\operatorname{div} \operatorname{grad} \mathbf{v}+\operatorname{grad} \operatorname{div} \mathbf{v}) \\
& =-\operatorname{grad} P+(\zeta+\eta / 3) \operatorname{grad} \operatorname{div} \mathbf{v}+\eta \operatorname{div} \operatorname{grad} \mathbf{v} \tag{8}
\end{align*}
$$

Substituting from (8) into momentum balance (3.78), the Navier-Stokes equation results:

$$
\begin{equation*}
\rho \dot{\mathbf{v}}=-\operatorname{grad} P+(\zeta+\eta / 3) \operatorname{grad} \operatorname{div} \mathbf{v}+\eta \operatorname{div} \operatorname{grad} \mathbf{v}+\rho(\mathbf{b}+\mathbf{i}) . \tag{9}
\end{equation*}
$$

In the case of incompressible fluid divv $=0$ (called also isochoric flow) and (9) is simplified to:

$$
\begin{equation*}
\rho \dot{\mathbf{v}}=-\operatorname{grad} P+\eta \operatorname{div} \operatorname{grad} \mathbf{v}+\rho(\mathbf{b}+\mathbf{i}) . \tag{10}
\end{equation*}
$$

The non-viscous fluid is described by zero viscosity coefficients $(\zeta, \eta)$; then Euler equation follows from (9):

$$
\begin{equation*}
\rho \dot{\mathbf{v}}=-\operatorname{grad} P+\rho(\mathbf{b}+\mathbf{i}) \tag{11}
\end{equation*}
$$

In the special case of hydrostatics, i.e. non-flowing fluid ( $\mathbf{v} \equiv \mathbf{o}$ ) we have from (9):

$$
\begin{equation*}
\operatorname{grad} P=\rho(\mathbf{b}+\mathbf{i}) \tag{12}
\end{equation*}
$$

which is the same equation as (3.228) (why?).


[^0]:    ${ }^{1}$ Based on I. Samohýl: Irreversible Thermodynamics. Prague: University of Chemical Technology, 1998 (in Czech).

