The Thermodynamics of Linear Fluids and Fluid Mixtures by Pekař & Samohýl

Exercise 4 to section $3.7.^1$

Verify that

$$T(x,t) = T_o + \frac{Q}{\rho c_V A 2\sqrt{\pi \alpha t}} \exp\left(\frac{-x^2}{4\alpha t}\right)$$
(1)

is a solution to the heat conduction equation (cf. exercise 1 to section 3.7)

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$$

 $(\alpha = k/(\rho c_V))$. Equation (1) describes uniaxial heat conduction along a rod with the cross-section A; T_o is the rod (and environment) temperature before the heat conduction was initiated by the heat Q at the point x = 0. This equation gives the temperature field in the rod.

Calculate the temperature field (in °C) in an ebonite rod for which $k = 0.167 \text{ J/(m s K)}, \rho = 1.15 \text{ g/cm}^3$, and $c_V = 1.46 \text{ J/(K g)}$, with $A = 1 \text{ cm}^2$ and $T_o = 273.15 \text{ K}$, by filling in following table:

time (min)		
1	2	5
	tir 1	time (1 1 2

The answer is:

	time (min)		
distance (mm)	1	2	5
0	68.8	48.6	30.8
5	24.1	28.8	25.0
10	1.04	5.99	13.3

¹Based on I. Samohýl: Irreversible Thermodynamics. Prague: University of Chemical Technology, 1998 (*in Czech*).