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Exercise 6 to section 3.7.1

Incompressible fluid flows in a rectangular slit without the action of any
external or inertial fields. The flow is laminar, stationary, in the direction of
x -axis; the fluid clings to the slit walls. The pressure at the input is P0, at
the output PL. See also the figure below. Integrating Navier-Stokes equation
derive equation for the velocity field of the fluid, then the expressions for the
maximum and mean velocity, and for the volume flow rate.

Consider a slit of the following dimensions: thickness B = 0.5 mm, length
L = 50 cm, width W = 20 cm. For the pressure difference between the slit
input and output equal to 1 kPa the volume flow rate of water (at room
temperature) was determined as 0.333 cm3/s. Calculate the viscosity of
water and its maximum and average velocities.

Try to answer before continuing reading.
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Navier-Stokes equation for the incompressible fluid is (cf. exercise 3 to
section 3.7):

ρv̇ = −gradP + η div gradv + ρ(b + i)

and in our case is simplified to

o = −gradP + η div gradv (1)

(the stationary case means that v̇ = o).

1Based on I. Samohýl: Irreversible Thermodynamics. Prague: University of Chemical
Technology, 1998 (in Czech).
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The fluid flows along the x -axis only, thus vy = vz = 0 and vx 6= 0. From
the incompressibility condition then follows that vx does not depend on the
x coordinate:

divv =
∂vx

∂x
= 0. (2)

The flow is planar (laminar), i.e. in the form of parallel planes, identical in
all planes perpendicular to the z -axis. In other words, vx does not depend
on the z coordinate, as well:

vx = vx(y). (3)

From Navier-Stokes equation (1) then follows:

∂P

∂x
= η

∂2vx

∂y2
(4)

and:
∂P

∂y
= 0 =

∂P

∂z
. (5)

Eq. (5) states that P = P (x). Taking into account (3), we see that the
left and right hand sides of (4) contain functions of different independent
variables and thus must represent an identity of constants, for instance:

(1/η)
∂P

∂x
= C (= const.). (6)

Eq. (6) can be integrated taking into account the following boundary condi-
tions:

x = 0, P = P0,

x = L, P = PL.

The results is P = Cηx+ const. where

C =
PL − P0

ηL
. (7)

Substitution of (6) into (4) gives:

∂2vx

∂y2
= C. (8)

The boundary conditions follow from the information on the sticking to the
walls:

y = ±B, vx = 0. (9)
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First integration of (8) gives:

∂vx

∂y
= Cy + C1. (10)

Integrating for the second time we obtain:

vx = (1/2)Cy2 + C1y + C2. (11)

Introducing boundary conditions (9) into (11) we find that C1 = 0 and
C2 = −(1/2)CB2. Thus, the final result is (taking into account (7)):

vx =
1

2

PL − P0

ηL
(y2 −B2) =

(P0 − PL)B2

2ηL

(
1− y2

B2

)
. (12)

The maximum velocity is obviously attained when y = 0, i.e. in the center
of the slit:

vxmax =
1

2

P0 − PL

ηL
B2. (13)

The average (mean) velocity is defined by integral:

v̄x =
1

2B

∫ B

−B

vxdy =
P0 − PL

3ηL
B2 ≡ 2

3
vxmax. (14)

The volume flow rate is then given by:

Q = 2BWv̄x = 2W
P0 − PL

3ηL
B2. (15)

The viscosity of water can be calculated from the given data and Eq.
(15); the result is 0.1 kg m−1s−1 (= 1 cP). The maximum velocity calculated
from Eq. (13) is 0.0025 m s−1 and the average velocity calculated from (14)
is 0.00167 m s−1.
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