
The Thermodynamics of Linear Fluids and Fluid Mixtures by Pekař & Samohýl

Exercise 1 to section 4.5.1

Derive entropic inequality and constitutive equations for non-viscous (lin-
ear) fluid mixture. This fluid model is quite common in chemistry where
viscosity effects are often negligible. In fact, we should remove Dγ from the
set of the independent variables of the (linear) fluid mixture – see p. 173 in
the book and cf. eqs. (3.129) and (3.130), and the text around eq. (3.181).
Although this could be, in principle, realized on the results obtained for the
mixture of the linear fluids, complete this exercise starting with appropriately
simplified entropic inequality and with the corresponding general constitutive
equations.

Try to answer before continuing reading.
We will start with the general local form of the entropy inequality or the

Clausius-Duhem inequality, cf. (4.84) and (4.85):

T
( n∑
α=1

ραs̀α +
n∑

α=1

rαsα

)
= −T div(q/T ) +Q+ Tσ. (1)

The term div(q/T ) is

div(q/T ) = (1/T ) divq− (1/T 2)q.gradT ≡ (1/T ) divq− (1/T 2)q.g.

Eq. (1) is then modified:

T
( n∑
α=1

ραs̀α +
n∑

α=1

rαsα

)
= −divq + (1/T )q.g +Q+ Tσ. (2)

It follows from (4.82) in the book and upon combination with (2):

−divq +Q =
n∑

α=1

ραùα +
n∑

α=1

rαuα −
n∑

α=1

trTαDα +
n−1∑
β=1

kβ.uβ+

(1/2)
n−1∑
β=1

rβu
2
β = −(1/T )q.g − Tσ + T

n∑
α=1

ραs̀α + T
n∑

α=1

rαsα.

(3)

1Based on I. Samohýl: Irreversible Thermodynamics. Prague: University of Chemical
Technology, 1998 (in Czech).
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Introducing the specific partial free energy fα (4.86) into (3) gives, cf. also
the inequality in (4.84):

−Tσ =
n∑

α=1

ραf̀α +
n∑

α=1

ραsα
\α
T +

n∑
α=1

fαrα −
n∑

α=1

trTαDα +
n−1∑
β=1

kβ.uβ+

(1/2)
n−1∑
β=1

rβu
2
β + (1/T )q.g ≤ 0. (4)

Constitutive equations in non-viscous fluid mixture are given generally by
the theorem on representation of linear isotropic functions, see pp. 173-174
in the book. They are (α, γ = 1, . . . , n; β = 1, . . . , n− 1):

uα = ûα(ργ, T ), (5)

sα = ŝα(ργ, T ), (6)

fα = f̂α(ργ, T ), (7)

rβ = r̂β(ργ, T ), (8)

q = −λg −
n−1∑
δ=1

τδuδ +
n∑
γ=1

χγhγ, (9)

kβ = −ξβg −
n−1∑
δ=1

νβδuδ +
n∑
γ=1

ωβγhγ, (10)

Tα = −Pα1. (11)

All coefficients, λ, τδ, χγ, ξβ, νβδ, ωβγ, Pα, are functions of scalars ρα, T only.
Compare these equations with the general constitutive equations of linear
fluids mixture given in the book on pages 173-174 and 179-180. Let us
substitute them into (4). From (7) we obtain

\α
f α≡

\
fα=

∂f̂α
∂T

\α
T +

n∑
γ=1

∂f̂α
∂ργ

\α
ργ

and substituting this expression into (4):

−Tσ = M1 +M2 +M3 ≤ 0 (12)

where

M1 =
n∑

α=1

(
ρα
∂f̂α
∂T

+ ραsα

) \α
T , (13)
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M2 =
n∑

α=1

n∑
γ=1

ρα
∂f̂α
∂ργ

\α
ργ +

n∑
α=1

fαrα, (14)

M3 = (1/T )q.g −
n∑

α=1

trTαDα +
n−1∑
β=1

kβ.uβ + (1/2)
n−1∑
β=1

rβu
2
β. (15)

M1 is modified using the definition of the material derivative (4.3) and
the diffusion velocity (4.24) which result in

\α
T=

∂T

∂t
+ vα.g =

∂T

∂t
+ uα.g + vn.g

giving finally

M1 =
n∑

α=1

ρα

(∂f̂α
∂T

+ sα

)∂T
∂t

+
n−1∑
β=1

ρβ

(∂f̂β
∂T

+ sβ

)
uβ.g+

n∑
α=1

ρα

(∂f̂α
∂T

+ sα

)
vn.g. (16)

The partial derivative in M2 can be modified using the definition of the
material derivative (4.3), the diffusion velocity (4.24), and the mass balance
(4.17); the latter can be written using (4.24) and (4.8) as:

∂ργ
∂t

+ ργtrDγ + uγ.hγ + vn.hγ = rγ. (17)

Then, the material derivative of the partial density is:

\α
ργ ≡

∂ργ
∂t

+ vα.hγ = rγ − ργtrDγ + (uα − uγ).hγ. (18)

Further,

ρα
∂f̂α
∂ργ

=
∂ραf̂α
∂ργ

− fαδαγ (19)

where δαγ is Kronecker delta. Expressions (18) and (19) are substituted into
(14):

M2 =
n∑

α=1

n∑
γ=1

(∂ραf̂α
∂ργ

− fαδαγ
)
rγ −

n∑
α=1

n∑
γ=1

ρα
∂f̂α
∂ργ

ργ trDγ+

n∑
α=1

n∑
γ=1

ρα
∂f̂α
∂ργ

(uα − uγ).hγ +
n∑

α=1

fαrα
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and the next-to-last term can be modified using the Kronecker’s delta defined
as δβγ = 1 for β = γ = 1, . . . , n − 1 and δβγ = 0 for β 6= γ including γ = n.
The result is:

M2 =
n∑

α=1

n∑
γ=1

∂ραf̂α
∂ργ

rγ −
n∑

α=1

n∑
γ=1

ρα
∂f̂α
∂ργ

ργ trDγ+

n∑
γ=1

n−1∑
β=1

ρβ
∂f̂β
∂ργ

uβ.hγ −
n−1∑
β=1

n∑
α=1

n∑
γ=1

ρα
∂f̂α
∂ργ

δβγuβ.hγ. (20)

Finally, M3 is modified substituting the constitutive equations (9)–(11):

M3 =
n∑

α=1

Pα trDα − (1/T )λg.g −
n−1∑
δ=1

(1/T ) τδ uδ.g +
n∑
γ=1

(1/T )χγhγ.g−

n−1∑
β=1

ξβ g.uβ −
n−1∑
β=1

n−1∑
δ=1

νβδ uδ.uβ +
n−1∑
β=1

n∑
γ=1

ωβγhγ.uβ+

(1/2)
n−1∑
β=1

rβu
2
β. (21)

Substitution of relationships (16), (20), and (21) into (12) gives the fol-
lowing form of entropic inequality:

−Tσ =
n∑

α=1

n∑
γ=1

∂ραf̂α
∂ργ

rγ +
n∑

α=1

ρα

(∂f̂α
∂T

+ sα

)∂T
∂t

+

n∑
γ=1

(
Pγ − ργ

n∑
α=1

ρα
∂f̂α
∂ργ

)
trDγ+

n∑
γ=1

n−1∑
β=1

(
ρβ
∂f̂β
∂ργ
−

n∑
α=1

ρα
∂f̂α
∂ργ

δβγ + ωβγ

)
uβ.hγ+

n∑
γ=1

(1/T )χγhγ.g +
n∑

α=1

ρα

(∂f̂α
∂T

+ sα

)
vn.g−

n−1∑
β=1

(
(1/T ) τβ + ξβ − ρβ

∂f̂β
∂T
− ρβsβ

)
g.uβ − (1/T )λg.g−

n−1∑
β=1

n−1∑
δ=1

(
νβδ − (1/2) rβδβδ

)
uδ.uβ ≤ 0. (22)
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This form can be simplified using the specific free energy of mixture f (4.92),
the specific entropy of mixture s (4.91), and the specific chemical potential
gα (4.161); see also (4.160). We also introduce new symbols:

ϑβ = (1/T ) τβ + ξβ − ρβ
∂f̂β
∂T
− ρβsβ; β = 1, . . . , n− 1 (23)

and note that

n∑
α=1

ρα
∂f̂α
∂ργ

=
n∑

α=1

(∂ραf̂α
∂ργ

− f̂αδαγ
)

= gγ − fγ. (24)

We can thus make following transformations. From the definition of gα and
f we have

gγ =
∂ρf̂

∂ργ
=

∂

∂ργ
ρ

n∑
α=1

wαfα =
∂

∂ργ
ρ

n∑
α=1

(ρα/ρ)fα =
n∑

α=1

∂ραf̂α
∂ργ

and, consequently
n∑

α=1

n∑
γ=1

∂ραf̂α
∂ργ

rγ =
n∑
γ=1

gγrγ. (25)

From similar sources we can derive2:

∂ρf̂

∂T
≡ ρ

∂f̂

∂T
=

∂

∂T

n∑
α=1

ραfα ≡
n∑

α=1

ρα
∂f̂α
∂T

and thus
n∑

α=1

ρα
∂f̂α
∂T

= ρ
∂f̂

∂T
. (26)

Further, combining

ρβ
∂f̂β
∂ργ

=
∂ρβ f̂β
∂ργ

− f̂βδβγ

with (in which (24) was used)

−
n∑

α=1

ρα
∂f̂α
∂ργ

δβγ ≡ −δβγ
n∑

α=1

ρα
∂f̂α
∂ργ

= −(gγ − fγ)δβγ = −gγδβγ + fγδβγ

we have

ρβ
∂f̂β
∂ργ
−

n∑
α=1

ρα
∂f̂

∂ργ
δβγ =

∂ρβ f̂β
∂ργ

− gγδβγ. (27)

2Note that f =
∑

α wαfα = (1/ρ)
∑

α ραfα.
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Substituting (25) to (27), inequality (22) is simplified to:

−Tσ =
n∑
γ=1

gγrγ + ρ
( ∂f̂
∂T

+ s
)∂T
∂t

+
n∑
γ=1

[Pγ − ργ(gγ − fγ)] trDγ+

n∑
γ=1

(1/T )χγhγ.g +
n∑
γ=1

n−1∑
β=1

(∂ρβ f̂β
∂ργ

− gγδβγ + ωβγ

)
uβ.hγ+

ρ
( ∂f̂
∂T

+ s
)
vn.g −

n−1∑
β=1

ϑβ g.uβ − (1/T )λg.g−

n−1∑
β=1

n−1∑
δ=1

(
νβδ − (1/2) rβδβδ

)
uδ.uβ ≤ 0. (28)

All quantities in this inequality

gγ, rγ, f, s, Pγ, fγ, ωβγ, χγ, ϑβ, λ, νβδ

are functions of scalars ργ, T only. Following variables are mutually indepen-
dent and can be selected arbitrarily:

ργ,hγ.uβ,vn, trDγ, T, ∂T/∂t,g. (29)

We can apply Lemma A.5.1 on page 296 in the book. The independent vari-
ables ργ, T are fixed at arbitrarily selected values and then suitable quantities
from (29), playing the role of X in Lemma A.5.1, are also fixed at proper
values.

In this way we find that
∂f̂

∂T
= −s (30)

and
Pγ = ργ(gγ − fγ); γ = 1, . . . , n (31)

for X = ∂T/∂t and X = trDγ, respectively. Choosing X = hγ with g = o,
uβ 6= o we see that

ωβγ = gγδβγ −
∂ρβ f̂β
∂ργ

; γ = 1, . . . , n; β = 1, . . . , n− 1. (32)

Similarly, choosing X = hγ with g 6= o, uβ = o:

χγ = 0; γ = 1, . . . , n (33)
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Consequently, (28) is modified to:

Tσ =−
n∑
γ=1

gγrγ +
n−1∑
β=1

ϑβ g.uβ + (1/T )λg.g+

n−1∑
β=1

n−1∑
δ=1

(
νβδ − (1/2) rβδβδ

)
uδ.uβ ≥ 0 (34)

Summarizing: the (thermodynamic) constitutive equations in the dis-
cussed mixture are (5)–(7), f = f̂(ργ, T ), s = ŝ(ργ, T ) and fulfill relation-
ships (30) and (31). The partial stress tensor (11) is determined by the
partial pressure Pα = P̂α(ργ, T ) which appears in (31). The transport coef-
ficients ωβγ are also determined by thermodynamic quantities, cf. (32). The
constitutive equations for the reaction rates are given by (8); rn follows from
the balance (4.20) in the book. Constitutive equations for (linear) transport
phenomena are

q = −λg −
n−1∑
δ=1

τδuδ (35)

for the heat transport and (10) for the interactions (cross-effects); note that
both contain the diffusion velocity, i.e. diffusion as another transport phe-
nomenon. The result (33) tells that heat flow cannot arise from composition
gradient. All coefficients λ, τδ, ξβ, νβδ, ωβγ are functions of scalars ργ, T
only. Those functions are generally non-linear but only ωβγ are determined
by thermodynamic quantities as (32) shows.

Equations (8) show that reaction rates are independent of g and uβ.
Choosing g = o and uβ = o it follows from (34) that the contribution of the
reaction rates to the entropy change (entropy inequality) is non-negative:

Πr ≡ −
n∑
γ=1

gγrγ ≥ 0. (36)

Inequality (34) can be shortened:

Tσ = Πr + Πt ≥ 0 (37)

where Πt is the contribution of the transport phenomena:

Πt ≡
n−1∑
β=1

ϑβ g.uβ + (1/T )λg.g +
n−1∑
β=1

n−1∑
δ=1

(
νβδ − (1/2) rβδβδ

)
uδ.uβ. (38)
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For any selection of ργ and T , Πr is non-negative constant and Πt is quadratic
form with constant coefficients. Choosing all components of g and uβ suffi-
ciently big, the form Πt outweighs the constant Πt. Consequently, also

Πt ≥ 0. (39)

This proof of (39) is more illustrative if the form (38) is transformed into the
canonical form. We only remind that this form contains quadratic terms only
(it is called also the diagonal form) and that law of inertia of quadratic forms
says that all canonical forms of a quadratic form have the same number of
positive, of negative, and of zero coefficients.

From Sylvester theorem on positive semi-definite quadratic forms and
(38) follows:

λ ≥ 0 (40)

or
νββ ≥ (1/2) rβ. (41)

The coefficient λ is thermal conductivity and (40) says that it cannot be neg-
ative. Relationship (41) expresses a limitation of reaction rates by diffusion
(the coefficients νββ are closely related to diffusion coefficients). For example,
in binary reaction mixture ν11 ≥ (1/2) r1.
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