## Exercise 1 to section 4.7. ${ }^{1}$

Calculate the content of carbon dioxide (molar \%) on the top of a gasometer of 50 m height. It operates at $25^{\circ} \mathrm{C}$ and contains a mixture of carbon dioxide and hydrogen with equimolar composition at its bottom. The gases are ideal and the gravitational acceleration $(g)$ has the value of $9.81 \mathrm{~m} \mathrm{~s}^{-2}$.

Try to answer before continuing reading.
Hint: use the Svedberg formula given on page 214, Rem. 23.
The formula is:

$$
\left(1 / x_{1}\right) \operatorname{grad} x_{1}=\left(M_{1} / R T\right)\left(1-\rho v_{1}\right) \mathbf{g}
$$

where $x_{1}$ is the molar fraction of component $1\left(\mathrm{CO}_{2}\right), M_{1}$ is its molar mass, $\rho$ is the mixture density and $v_{1}$ is the specific volume of pure component 1 .

The gravitational acceleration has only one non-zero component (of magnitude $g$ ) which we locate along the vertical axis (symbol $z$ ). Thus, this axis points from top (of the gasometer) down; the gasometer top is located at $z=0$ and its bottom at $z=50 \mathrm{~m}$. The Svedberg formula for this case is

$$
\begin{equation*}
\left(1 / x_{1}\right)\left(d x_{1} / d z\right)=\left(M_{1} / R T\right)\left(1-\rho v_{1}\right) g . \tag{1}
\end{equation*}
$$

The density of this two-component mixture is expressed using equations (4.419) and (4.424) from which it follows that:

$$
\begin{equation*}
\rho_{\alpha}=\left(P_{\alpha} M_{\alpha}\right) / R T=\left(x_{\alpha} P M_{\alpha}\right) / R T, \quad \alpha=1,2 \tag{2}
\end{equation*}
$$

and $\left(1=\mathrm{CO}_{2}\right)$

$$
\begin{equation*}
\rho=(P / R T)\left(x_{\mathrm{CO}_{2}} M_{\mathrm{CO}_{2}}+x_{\mathrm{H}_{2}} M_{\mathrm{H}_{2}}\right) . \tag{3}
\end{equation*}
$$

The product in (1) then is, taking into account also eq. (4.420),

$$
\begin{equation*}
\rho v_{\mathrm{CO}_{2}}=x_{\mathrm{CO}_{2}}+x_{\mathrm{H}_{2}}\left(M_{\mathrm{H}_{2}} / M_{C O_{2}}\right) \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\rho v_{\mathrm{CO}_{2}}=x_{\mathrm{CO}_{2}}\left(1-\frac{M_{\mathrm{H}_{2}}}{M_{\mathrm{CO}_{2}}}\right)+\frac{M_{\mathrm{H}_{2}}}{M_{\mathrm{CO}_{2}}} . \tag{5}
\end{equation*}
$$

Expression (5) is substituted into the Svedberg formula (1) and after a minor modification we have

$$
\begin{equation*}
\frac{d x_{\mathrm{CO}_{2}}}{x_{\mathrm{CO}_{2}}\left[-x_{\mathrm{CO}_{2}}\left(1-\frac{M_{H_{2}}}{M_{C O_{2}}}\right)+1-\frac{M_{H_{2}}}{M_{\mathrm{CO}}}\right]}=\frac{g M_{\mathrm{CO}}}{R T} d z . \tag{6}
\end{equation*}
$$

[^0]Eq. (6) is integrated using the limits on the left hand side from 0.5 to $x$ (to be calculated), on the right hand side from 50 to 0 (meters), and $M_{C O_{2}}=0.044$, $M_{H_{2}}=0.002(\mathrm{~kg} / \mathrm{mol})$. The result is an equation for $x$ the solution of which is $x=0.4979$. Thus the carbon dioxide content at the bottom is $49.79 \%$ (molar).


[^0]:    ${ }^{1}$ Based on I. Samohýl: Irreversible Thermodynamics. Prague: University of Chemical Technology, 1998 (in Czech).

