Exercise 2 to section 4.7. ${ }^{1}$

Calculate the composition of air in the Earth gravitational field at the height of 8 km . Suppose that air components are oxygen and nitrogen only which behave as ideal gases and that the average air temperature is $0^{\circ} \mathrm{C}$. The oxygen content at the Earth surface is 21 molar \%.

Try to answer before continuing reading.
Hint: use the Svedberg formula given on page 214, Rem. 23.
The theoretical background is the same as that for exercise 1 to section 4.7. In this exercise (Nr. 2) the theory leads to the following integral

$$
\begin{equation*}
\int_{0.21}^{x} \frac{d x_{\mathrm{O}_{2}}}{x_{\mathrm{O}_{2}}\left[-x_{\mathrm{O}_{2}}\left(1-\frac{M_{N_{2}}}{M_{\mathrm{O}_{2}}}\right)+1-\frac{M_{N_{2}}}{M_{O_{2}}}\right]}=\int_{8000}^{0} \frac{g M_{O_{2}}}{R T} d z . \tag{1}
\end{equation*}
$$

Integrating (1) we get

$$
\begin{equation*}
\left[-\frac{1}{1-\frac{M_{N_{2}}}{M_{O_{2}}}} \ln \frac{-\left(1-\frac{M_{N_{2}}}{M_{O_{2}}}\right) x_{O_{2}}+1-\frac{M_{N_{2}}}{M_{O_{2}}}}{x_{O_{2}}}\right]_{0.21}^{x}=\left[\frac{g M_{O_{2}}}{R T} z\right]_{8000}^{0} \tag{2}
\end{equation*}
$$

From (2) we finally have an equation for our unknown quantity:

$$
\ln \frac{-0.125 x+0.125}{x}=-0.616284
$$

from which $x=0.188$; thus the oxygen concentration at 8 km is 18.8 molar \%.

[^0]
[^0]: ${ }^{1}$ Based on I. Samohýl: Irreversible Thermodynamics. Prague: University of Chemical Technology, 1998 (in Czech).

