Exercise 1 to section 3.1 ${ }^{1}$

Let us analyze a simple motion $\mathbf{x}=\underline{\chi}(\mathbf{X}, t)(\mathrm{p} .68)$ in the form

$$
\begin{equation*}
\mathbf{x}=\mathbf{b}+\alpha t \mathbf{X} ; \quad t>0 \tag{1}
\end{equation*}
$$

where \mathbf{b} and α is a constant vector and (non-zero) scalar, respectively. When $\alpha t>1$ we call this motion the volume expansion whereas the case $\alpha t<1$ represents the volume contraction (the compression). Let us further select identical cartesian frames for the reference and actual configurations (schematically $i \equiv J=1,2,3)$. What is the component representation of this motion, of the inverse motion and what are the motion-related (kinematic) fields? Try to answer before continuing reading.

The component representation of motion (1) is simply:

$$
\begin{equation*}
x^{i}=b^{i}+\alpha t X^{i}=\chi^{i}\left(X^{i}, t\right) . \tag{2}
\end{equation*}
$$

From (2) we can easily found the inverse motion (p. 68) in the component

$$
\begin{equation*}
X^{i}=\left(x^{i}-b^{i}\right) / \alpha t \equiv \chi^{-1 i}\left(x^{i}, t\right) \tag{3}
\end{equation*}
$$

and the vectorial

$$
\begin{equation*}
\mathbf{X}=(\mathbf{x}-\mathbf{b}) / \alpha t \equiv \underline{\chi}^{-1}(\mathbf{x}, t) \tag{4}
\end{equation*}
$$

forms.
The velocity (p. 69) is given by

$$
\begin{equation*}
v^{i}=\partial \chi^{i} / \partial t=\alpha X^{i} \quad \text { or } \quad \mathbf{v}=\alpha \mathbf{X} \tag{5}
\end{equation*}
$$

The deformation gradient (p. 69) is

$$
F^{i j}=\partial \chi^{i} / \partial X^{j}=\left\{\begin{array}{rl}
\alpha t & \text { for } \tag{6}\\
0 & i=j, \\
0 & \text { for }
\end{array} i \neq j . ~ \$\right.
$$

In the vectorial representation:

$$
\begin{equation*}
\mathbf{F}=\alpha t \mathbf{1} \Rightarrow \mathbf{F}^{-1}=(\alpha t)^{-1} \mathbf{1} ; \quad \dot{\mathbf{F}}=\alpha \mathbf{1} . \tag{7}
\end{equation*}
$$

The velocity gradient (p. 70):

$$
L^{i j}=\partial v^{i} / \partial x^{j}=\alpha \partial X^{i} / \partial x^{j}=\left\{\begin{array}{rll}
\alpha(1 / \alpha t)=t^{-1} & \text { for } \quad i=j, \tag{8}\\
0 & \text { for } \quad i \neq j
\end{array}\right.
$$

[^0]and in the vectorial representation:
\[

$$
\begin{equation*}
\mathbf{L}=t^{-1} \mathbf{1} \equiv \dot{\mathbf{F}} \mathbf{F}^{-1} \tag{9}
\end{equation*}
$$

\]

which confirms equation (3.14).
The decomposition to the stretching (\mathbf{D}) and spin ($\mathbf{W} ;$ p. 70) is:

$$
\begin{gather*}
\mathbf{D}=\frac{1}{2}\left(\mathbf{L}+\mathbf{L}^{T}\right)=\mathbf{L}, \tag{10}\\
\mathbf{W}=\frac{1}{2}\left(\mathbf{L}-\mathbf{L}^{T}\right)=\frac{1}{2} t^{-1}(\mathbf{1}-\mathbf{1})=\mathbf{0} \tag{11}
\end{gather*}
$$

(the zero spin is in accordance with non-rotational character of this motion).
The determinant of the deformation gradient (p. 70) is:

$$
\begin{equation*}
J \equiv|\operatorname{det} \mathbf{F}|=|\operatorname{det}(\alpha t \mathbf{1})|=\left|(\alpha t)^{3}\right| . \tag{12}
\end{equation*}
$$

The density (field) develops in time according to the following equation (p. 87) written for the simplified case $\alpha>0$:

$$
\begin{equation*}
\rho=\rho_{0} / J=\rho_{0}(\alpha t)^{-3} \tag{13}
\end{equation*}
$$

where $\rho_{0}>0$ is the density in the reference configuration.
Let us investigate the specific case of $\alpha=\frac{1}{20} \mathrm{~s}^{-1}$. The compression occurs when $\rho_{0} / \rho<1$, that is, from (13), when $(t / 20)^{3}<1 \mathrm{~s}$ or when $t<20 \mathrm{~s}$. The expansion occurs when $\rho_{0} / \rho>1$, that is, from (13), when $(t / 20)^{3}>1 \mathrm{~s}$ or when $t>20 \mathrm{~s}$. At $t=20 \mathrm{~s}$, the density is equal to the referential density. Following figure shows the evolution of density within the first fifty seconds of the motion:

Another figure illustrates the shape change of a cube during the first 50 s of motion. Only its bottom face is shown and the vector \mathbf{b} was selected as $(1,1,0)$. Note the referential configuration at $t=0 \mathrm{~s}$.

[^0]: ${ }^{1}$ Based on I. Samohýl: Irreversible Thermodynamics. Prague: University of Chemical Technology, 1998 (in Czech).

