Exercise 2 to section 3.1 ${ }^{1}$

Motion $\mathbf{x}=\underline{\chi}(\mathbf{X}, t)(\mathrm{p} .68)$ governed by the equation $\mathbf{x}=\mathbf{A X}$ where the tensor \mathbf{A} is expressed by the matrix

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \tag{1}\\
\alpha t & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

represents a simple shear (α is some constant). Note that the tensor \mathbf{A} is a function of time.

Let us select identical cartesian frames for the reference and actual configurations (schematically $i \equiv J=1,2,3$). What is the component representation of this motion, of the inverse motion and what are the motion-related (kinematic) fields? Try to answer before continuing reading.

The component representation, $x^{i}=\chi^{i}\left(X^{i}, t\right)$, of simple shear is:

$$
\begin{equation*}
x^{1}=X^{1}, x^{2}=\alpha t X^{1}+X^{2}, x^{3}=X^{3} . \tag{2}
\end{equation*}
$$

From (2) we can easily found the inverse motion (p. 68) in the component form, $X^{i}=\chi^{-1 i}\left(x^{i}, t\right)$:

$$
\begin{equation*}
X^{1}=x^{1}, X^{2}=x^{2}-\alpha t X^{1}, X^{3}=x^{3} . \tag{3}
\end{equation*}
$$

Its vectorial representation is $\mathbf{X}=\mathbf{A}^{-1} \mathbf{x}$ where the matrix (tensor) \mathbf{A}^{-1} is:

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \tag{4}\\
-\alpha t & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

The velocity (p. 69) is given by $v^{i}=\partial \chi^{i} / \partial t$ and from it $v^{1}=0, v^{2}=$ $\alpha X^{1}, v^{3}=0$ or in the vectorial form:

$$
\mathbf{v}=\frac{\partial \mathbf{A}}{\partial t} \mathbf{X}=\left[\begin{array}{lll}
0 & 0 & 0 \tag{5}\\
\alpha & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \mathbf{X} .
$$

The deformation gradient (p. 69) is given by $F^{i j}=\partial \chi^{i} / \partial X^{j}$ and from this we see that $\mathbf{F}=\mathbf{A}$ and also that $\dot{\mathbf{F}}$ is given by the matrix shown in (5). It is also obvious that $\mathbf{F}^{-1}=\mathbf{A}^{-1}$.

[^0]From the definition of the velocity gradient (p. 70), $L^{i j}=\partial v^{i} / \partial x^{j}$, it follows that it is also given by the matrix shown in (5), which also means that $\mathbf{L} \equiv \dot{\mathbf{F}}$. Then it is easy to verify the identity $\mathbf{L}=\dot{\mathbf{F}} \mathbf{F}^{-1}$.

The decomposition to the stretching (\mathbf{D}) and $\operatorname{spin}(\mathbf{W} ;$ p. 70) is:

$$
\begin{gather*}
\mathbf{D}=\frac{1}{2}\left(\mathbf{L}+\mathbf{L}^{T}\right)=\left[\begin{array}{ccc}
0 & \alpha / 2 & 0 \\
\alpha / 2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \tag{6}\\
\mathbf{W}=\frac{1}{2}\left(\mathbf{L}-\mathbf{L}^{T}\right)=\left[\begin{array}{ccc}
0 & -\alpha / 2 & 0 \\
\alpha / 2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] . \tag{7}
\end{gather*}
$$

).
The determinant of the deformation gradient (p. 70) is $J \equiv|\operatorname{det} \mathbf{F}|=1$. The density thus remains constant and equal to the referential density (p. 87): $\rho=\rho_{0} / J=\rho_{0}$.

Let us outline some results for the specific case of $\alpha=\frac{1}{4} \mathrm{~s}^{-1}$ and the shape change of a cube, initially residing at the positive corner of the coordinate axes (the referential configuration) during the first 4 s of motion. Only its bottom face is shown:

[^0]: ${ }^{1}$ Based on I. Samohýl: Irreversible Thermodynamics. Prague: University of Chemical Technology, 1998 (in Czech).

