Exercise 4 to section 3.1^{1}

Show that the quadratic form $\mathbf{W} \mathbf{x} \cdot \mathbf{x}=\sum_{i, j} W^{i j} x^{j} x^{i}$ (in cartesian coordinates), where \mathbf{W} is the skew-symmetric matrix (tensor), is zero. Try to answer before continuing reading.

Skew-symmetric matrix fulfills by definition $W^{i j}+W^{j i}=0$ which also means that $W^{i i}=0$. Then

$$
\begin{aligned}
\mathbf{W} \mathbf{x} \cdot \mathbf{x} & =\sum_{i}\left(W^{i 1} x^{1} x^{i}+W^{i 2} x^{2} x^{i}+W^{i 3} x^{3} x^{i}\right) \\
& =W^{11}\left(x^{1}\right)^{2}+W^{12} x^{2} x^{1}+W^{13} x^{3} x^{1}+W^{21} x^{1} x^{2}+W^{22}\left(x^{2}\right)^{2} \\
& +W^{23} x^{3} x^{2}+W^{31} x^{1} x^{3}+W^{32} x^{2} x^{3}+W^{33}\left(x^{3}\right)^{2} \\
& =0+W^{12} x^{2} x^{1}+W^{13} x^{3} x^{1}-W^{12} x^{1} x^{2}+0+W^{23} x^{3} x^{2} \\
& -W^{13} x^{1} x^{3}-W^{23} x^{2} x^{3}+0=0 .
\end{aligned}
$$

[^0]
[^0]: ${ }^{1}$ Based on I. Samohýl: Irreversible Thermodynamics. Prague: University of Chemical Technology, 1998 (in Czech).

