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The proof of equation (e):

Equation (b) in Rem. 22 contains function:
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Equation (c) in Rem. 22 should be valid for arbitrary values of β, εσ, i.e.,
also for β = εσ = 0. Substitution these values (together with λ = 0) into the
last equation in (3) yields inequality (e) in Rem. 22.

The inequality (e) is another restriction put by thermodynamics on reac-
tion kinetics and is not seen in other works. However, it seems that explicit
consequences, e.g. for rate constants, can be derived only for very simple
reactions.1
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