The Thermodynamics of Linear Fluids and Fluid Mixtures by Pekař \& Samohýl
Page 98, equation (3.113)
From equation (3.107) follows:

$$
Q=\rho \dot{u}+\operatorname{divq}-\operatorname{tr}(\mathbf{T D})
$$

and equation (3.109) can be then modified:

$$
-T \sigma=-T \rho \dot{s}-T \operatorname{div}(\mathbf{q} / T)+\rho \dot{u}+\operatorname{div} \mathbf{q}-\operatorname{tr}(\mathbf{T D})
$$

From the definition (3.111) it follows that $\dot{f}=\dot{u}-T \dot{s}-s \dot{T}$; thus

$$
\begin{equation*}
-T \rho \dot{s}+\rho \dot{u}=\rho \dot{f}+\rho s \dot{T} \tag{1}
\end{equation*}
$$

Further:

$$
\begin{align*}
\operatorname{div}(\mathbf{q} / T) & =\sum_{j} \frac{\partial}{\partial x^{j}}\left(\frac{q^{j}}{T}\right)=\sum_{j}\left[\frac{1}{T} \frac{\partial q^{j}}{\partial x^{j}}+q^{j} \frac{\partial}{\partial x^{j}}\left(\frac{1}{T}\right)\right] \\
& =\frac{1}{T} \sum_{j} \frac{\partial q^{j}}{\partial x^{j}}+\sum_{j} q^{j}\left(\operatorname{grad} \frac{1}{T}\right)^{j}=\frac{1}{T} \operatorname{divq}+\mathbf{q} \cdot \operatorname{grad} \frac{1}{T} \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\operatorname{grad} \frac{1}{T}\right)^{i}=\frac{\partial}{\partial x^{i}}\left(\frac{1}{T}\right)=-\frac{1}{T^{2}} \frac{\partial T}{\partial x^{i}}=-\frac{1}{T^{2}}(\operatorname{grad} T)^{i} \equiv-\frac{1}{T^{2}} g^{i} \tag{3}
\end{equation*}
$$

where the definition (3.112) was used in the last identity.
Taking into account (1) to (3) we obtain:

$$
\begin{aligned}
-T \sigma & =\rho \dot{f}+\rho s \dot{T}-T\left(\frac{1}{T} \operatorname{div} \mathbf{q}-\frac{1}{T^{2}} \mathbf{q} \cdot \mathbf{g}\right)+\operatorname{div} \mathbf{q}-\operatorname{tr}(\mathbf{T D}) \\
& =\rho \dot{f}+\rho s \dot{T}+T^{-1} \mathbf{q} \cdot \mathbf{g}-\operatorname{tr}(\mathbf{T D})
\end{aligned}
$$

which is as in (3.113).

