The Thermodynamics of Linear Fluids and Fluid Mixtures by Pekař \& Samohýl

Page 109, equation (3.148)

It follows from (3.62):

$$
\begin{equation*}
\operatorname{grad} \frac{\partial \rho}{\partial t}+\operatorname{grad}(\operatorname{div} \rho \mathbf{v})=0 \tag{1}
\end{equation*}
$$

Capitalizing on (3.126) we obtain:

$$
\begin{equation*}
\operatorname{grad} \frac{\partial \rho}{\partial t}=\frac{\partial \mathbf{h}}{\partial t} \tag{2}
\end{equation*}
$$

The second term on the left hand side of (1) can be transformed as follows from its the component form:

$$
\begin{align*}
\operatorname{grad}(\operatorname{div} \rho \mathbf{v}) & =\operatorname{grad}\left(\frac{\partial \rho v^{1}}{\partial x^{1}}+\frac{\partial \rho v^{2}}{\partial x^{2}}+\frac{\partial \rho v^{3}}{\partial x^{3}}\right) \\
& =\operatorname{grad}\left(v^{1} \frac{\partial \rho}{\partial x^{1}}+\rho \frac{\partial v^{1}}{\partial x^{1}}+v^{2} \frac{\partial \rho}{\partial x^{2}}+\rho \frac{\partial v^{2}}{\partial x^{2}}+v^{3} \frac{\partial \rho}{\partial x^{3}}+\rho \frac{\partial v^{3}}{\partial x^{3}}\right) \\
& =\operatorname{grad}(\mathbf{v} \cdot \mathbf{h}+\rho \operatorname{divv}) \equiv \operatorname{grad}(\mathbf{v} \cdot \mathbf{h})+\operatorname{grad}(\rho \operatorname{tr} \mathbf{D}) \tag{3}
\end{align*}
$$

where (3.16) was used in the last identity. The two final terms in (3) are further modified, one-by-one:

$$
\begin{equation*}
\operatorname{grad}(\rho \operatorname{tr} \mathbf{D})=\rho \operatorname{grad}(\operatorname{tr} \mathbf{D})+(\operatorname{tr} \mathbf{D}) \operatorname{grad} \rho \equiv \mathbf{h} \operatorname{tr} \mathbf{D}+\rho \operatorname{grad}(\operatorname{tr} \mathbf{D}) \tag{4}
\end{equation*}
$$

where (3.126) was used, again;

$$
\begin{align*}
{[\operatorname{grad}(\mathbf{v} . \mathbf{h})]^{i} } & =\frac{\partial}{\partial x^{i}}(\mathbf{v} . \mathbf{h})=v^{1} \frac{\partial h^{1}}{\partial x^{i}}+h^{1} \frac{\partial v^{1}}{\partial x^{i}}+v^{2} \frac{\partial h^{2}}{\partial x^{i}}+h^{2} \frac{\partial v^{2}}{\partial x^{i}}+v^{3} \frac{\partial h^{3}}{\partial x^{i}}+h^{3} \frac{\partial v^{3}}{\partial x^{i}} \\
& =v^{1} \frac{\partial h^{i}}{\partial x^{1}}+v^{2} \frac{\partial h^{i}}{\partial x^{2}}+v^{3} \frac{\partial h^{i}}{\partial x^{3}}+h^{1} L^{1 i}+h^{2} L^{2 i}+h^{3} L^{3 i} . \tag{5}
\end{align*}
$$

In (5) definition (3.14) was used as well as the symmetry of the tensor grad \mathbf{h} which is shown as follows:
$(\operatorname{grad} \mathbf{h})^{i j}=\frac{\partial h^{i}}{\partial x^{j}}=\frac{\partial}{\partial x^{j}}\left(\frac{\partial \rho}{\partial x^{i}}\right)=\frac{\partial^{2} \rho}{\partial x^{j} \partial x^{i}}=\frac{\partial}{\partial x^{i}}\left(\frac{\partial \rho}{\partial x^{j}}\right)=\frac{\partial h^{j}}{\partial x^{i}}=(\operatorname{grad} \mathbf{h})^{j i}$.
From (3.9) it follows:

$$
\dot{h}^{i}=\frac{\partial h^{i}}{\partial x^{j}}+v^{1} \frac{\partial h^{i}}{\partial x^{1}}+v^{2} \frac{\partial h^{i}}{\partial x^{2}}+v^{3} \frac{\partial h^{i}}{\partial x^{3}}
$$

and after substitution into (5):

$$
\begin{gather*}
{[\operatorname{grad}(\mathbf{v} . \mathbf{h})]^{i}=\dot{h}^{i}-\frac{\partial h^{i}}{\partial t}+h^{1} L^{1 i}+h^{2} L^{2 i}+h^{3} L^{3 i}} \\
\operatorname{grad}(\mathbf{v} . \mathbf{h})=\dot{\mathbf{h}}-\frac{\partial \mathbf{h}}{\partial t}+\mathbf{h} \mathbf{L} \equiv \dot{\mathbf{h}}-\frac{\partial \mathbf{h}}{\partial t}+\mathbf{h}(\mathbf{D}+\mathbf{W}) \tag{6}
\end{gather*}
$$

where (3.15) was used in the last identity; let us note that $\mathbf{h}(\mathbf{D}+\mathbf{W})$ denotes vector the i-th component of which is equal to $\sum_{j} h^{j}\left(D^{j i}+W^{j i}\right)$.

Introducing (2), (3), (4), and (6) into (1), eq. (3.148) follows.

