Page 87, equations (3.67) and (3.68)
The proof of equation (3.67):
The left hand side can be expanded

$$
\frac{\partial \rho \varphi}{\partial t}+\operatorname{div} \rho \varphi \mathbf{v}=\varphi \dot{\rho}+\rho \dot{\varphi}+\varphi \operatorname{div} \rho \mathbf{v}=\varphi\left(\frac{\partial \rho}{\partial t}+\operatorname{div} \rho \mathbf{v}\right)+\rho \dot{\varphi}
$$

Using (3.62), equation (3.67) follows.

The proof of equation (3.68):
From equation (3.22) it follows:

$$
\begin{aligned}
\overline{\int_{\mathcal{V}} \rho \varphi \mathrm{d} v} & =\int_{\mathcal{V}}(\dot{\dot{\rho \varphi}}+\rho \varphi \operatorname{divv}) \mathrm{d} v=\int_{\mathcal{V}}(\varphi \dot{\rho}+\rho \dot{\varphi}+\rho \varphi \operatorname{divv}) \mathrm{d} v \\
& =\int_{\mathcal{V}}\left[\varphi\left(\frac{\partial \rho}{\partial t}+\operatorname{div} \rho \mathbf{v}\right)+\rho \dot{\varphi}\right] \mathrm{d} v
\end{aligned}
$$

Using (3.62), equation (3.68) follows.

