Page 181, equation (4.175)

At first, let us remind that components a^{p} of a vector \vec{a} in basis \vec{g}^{p} are given, according to (A.85), by scalar products $\vec{a} \cdot \vec{g}^{p} ; p=1, \ldots, n-h$ in our case; cf. also (A.88):

$$
\begin{equation*}
\vec{a} \cdot \vec{g}^{p}=\sum_{r} a^{r} \vec{g}_{r} \cdot \vec{g}^{p}=a^{p} . \tag{1}
\end{equation*}
$$

The components of $\vec{\mu}$ can be expressed using (4.174) as follows:

$$
\begin{equation*}
\vec{\mu} \cdot \vec{g}^{p}=(-\vec{A}+\vec{B}) \cdot \vec{g}^{p}=-\vec{A} \cdot \vec{g}^{p}+0 \tag{2}
\end{equation*}
$$

(remember that \vec{B} and \vec{g}^{p} lie in perpendicular subspaces). The product $-\vec{A} \cdot \vec{g}^{p}$ represents the components of vector $-\vec{A}$, see (1).

The product $\vec{\mu} . \vec{g}^{p}$ can be expressed also in the basis of the mixture space \mathcal{U}, using (4.173) and (4.40):

$$
\begin{equation*}
-A^{p}=\vec{\mu} \cdot \vec{g}^{p}=\sum_{\alpha=1}^{n} \mu_{\alpha} \vec{e}^{\alpha} \cdot \sum_{\alpha=1}^{n} P^{p \alpha} \vec{e}_{\alpha}=\sum_{\alpha=1}^{n} \mu_{\alpha} P^{p \alpha} ; \quad p=1, \ldots, n-h . \tag{3}
\end{equation*}
$$

Thus the vector \vec{A} has the same components but of opposite sign as expressed by (4.176). This vector is expressed in the basis \vec{g}_{p} by the (definition) equation (4.175).

