The Thermodynamics of Linear Fluids and Fluid Mixtures by Pekař \& Samohýl

Page 182, equation (4.178)

The dissipation Π_{0} defined by (4.171) can be written as follows:

$$
\begin{equation*}
\Pi_{0}=-\sum_{\beta=1}^{n-1}\left(g_{\beta}-g_{n}\right) r_{\beta}=-\sum_{\beta=1}^{n-1} g_{\beta} r_{\beta}+g_{n} \sum_{\beta=1}^{n-1} r_{\beta} \tag{1}
\end{equation*}
$$

From balance (4.20) follows:

$$
\begin{equation*}
r_{n}=-\sum_{\beta=1}^{n-1} r_{\beta} \tag{2}
\end{equation*}
$$

Using (2) in (1) we have:

$$
\begin{equation*}
\Pi_{0}=-\sum_{\beta=1}^{n-1} g_{\beta} r_{\beta}-g_{n} r_{n}=-\sum_{\alpha=1}^{n} g_{\alpha} r_{\alpha} \tag{3}
\end{equation*}
$$

Substituting from (4.172) and (4.26) into (3) successively we get:

$$
\begin{equation*}
-\sum_{\alpha=1}^{n} g_{\alpha} r_{\alpha}=-\sum_{\alpha=1}^{n} \frac{\mu_{\alpha}}{M_{\alpha}} r_{\alpha}=-\sum_{\alpha=1}^{n} \mu_{\alpha} J^{\alpha} . \tag{4}
\end{equation*}
$$

Referring to eqs. (4.173) and (4.33) the last product in (4) can be written:

$$
\begin{equation*}
-\sum_{\alpha=1}^{n} \mu_{\alpha} J^{\alpha}=-\vec{\mu} . \vec{J} . \tag{5}
\end{equation*}
$$

Introducing the decomposition of the chemical potential, (4.174), we obtain:

$$
\begin{equation*}
-\vec{\mu} \cdot \vec{J}=-(-\vec{A}+\vec{B}) \cdot \vec{J}=\vec{A} \cdot \vec{J} \tag{6}
\end{equation*}
$$

where we used the facts that $\vec{B} \in \mathcal{W}((4.174)), \vec{J} \in \mathcal{V}((4.36))$, and $\mathcal{W} \perp \mathcal{V}$ (after (4.36) and also (4.174)) from which $\vec{B} . \vec{J}=0$ follows.

The last product in (6) can be written with the help of (4.43) and (4.175) as follows:

$$
\begin{equation*}
\vec{A} \cdot \vec{J}=\sum_{p=1}^{n-h} J_{p} A^{p} \tag{7}
\end{equation*}
$$

Combining (4.171) with (3)-(7), eq.(4.178) results.
Note that the whole procedure can be generalized to a mixture of reacting and non-reacting components. Without loss of generality let us suppose that the first m components are reacting and components $m+1, m+2, \ldots, n$ are non-reacting. Then $\Pi_{0}=-\sum_{\psi=1}^{m-1}\left(g_{\psi}-g_{m}\right) r_{\psi}, \sum_{\varphi=m+1}^{n} g_{\varphi} r_{\varphi}=0$ can be used in balance (4.20) and instead of (2) we have $r_{m}=-\sum_{\psi=1}^{m-1} r_{\psi}$; the other parts of the derivation remain unchanged as well as the final result (4.178).

