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Page 187, equations (4.208) and (4.209)
From the definition (4.165) of coefficients wg, it follows:
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The differential of partial free energy reads:
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and from this then follows:
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Additional relationships among differential can be obtained from the rela-

tionship (4.193) for partial thermodynamic pressure:
dPs = ppdgs + gsdps — psdfs — fadps,

9sdps — psdfs — fedps = dBs — psdgs.
Substituting from (2) and (3) into (1) we obtain:
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and this is equation (4.208).
Summing (4) from f=1to f =n —1 we get:
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From eq. (4.187) we have
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From Gibbs-Duhem equation (4.207), taking into account the definitions of
mass fraction, (4.22), and volume, (4.195), it further follows:
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Substitution from (6) and (7) into (5) results in following expression:
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From equation (4.164), taking into account (4.92) and the definition of
mass fraction, (4.22), we derive:
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Substituting (9) into (8), eq. (4.209) follows:
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