Page 202, equation (4.282)

It follows from (4.281):

$$
\begin{align*}
\frac{\partial \tilde{s}}{\partial T} & =(1 / T)\left(\frac{\partial \tilde{u}}{\partial T}-\frac{P}{\rho^{2}} \frac{\partial \tilde{\rho}}{\partial T}\right), \tag{1}\\
\frac{\partial \tilde{s}}{\partial P} & =(1 / T)\left(\frac{\partial \tilde{u}}{\partial P}-\frac{P}{\rho^{2}} \frac{\partial \tilde{\rho}}{\partial P}\right) . \tag{2}
\end{align*}
$$

From (1) and (2) we obtain:

$$
\begin{gather*}
\frac{\partial^{2} \tilde{s}}{\partial T \partial P}=(1 / T) \frac{\partial^{2} \tilde{u}}{\partial T \partial P}-(1 / T)\left(\frac{P}{\rho^{2}} \frac{\partial^{2} \tilde{\rho}}{\partial T \partial P}+\frac{1}{\rho^{2}} \frac{\partial \tilde{\rho}}{\partial T}\right) \tag{3}\\
\frac{\partial^{2} \tilde{s}}{\partial P \partial T}=\left(-1 / T^{2}\right)\left(\frac{\partial \tilde{u}}{\partial P}-\frac{P}{\rho^{2}} \frac{\partial \tilde{\rho}}{\partial P}\right)+(1 / T)\left(\frac{\partial^{2} \tilde{u}}{\partial P \partial T}-\frac{P}{\rho^{2}} \frac{\partial^{2} \tilde{\rho}}{\partial P \partial T}\right) . \tag{4}
\end{gather*}
$$

Due to integrability condition, (3) and (4) should equal, hence

$$
\begin{gather*}
\left(-1 / T \rho^{2}\right) \frac{\partial \tilde{\rho}}{\partial T}=\left(-1 / T^{2}\right)\left(\frac{\partial \tilde{u}}{\partial P}-\frac{P}{\rho^{2}} \frac{\partial \tilde{\rho}}{\partial P}\right) \\
\left(T / \rho^{2}\right) \frac{\partial \tilde{\rho}}{\partial T}=\frac{\partial \tilde{u}}{\partial P}-\frac{P}{\rho^{2}} \frac{\partial \tilde{\rho}}{\partial P} \tag{5}
\end{gather*}
$$

Rearranging (5), eq. (4.282) follows immediately.

