Page 214, equation (4.335)

It follows from (4.172):

$$
\begin{equation*}
\operatorname{grad} \mu_{\alpha}=M_{\alpha} \operatorname{grad} g_{\alpha} \tag{1}
\end{equation*}
$$

and from (4.176)

$$
\begin{equation*}
\operatorname{grad} A^{p}=-\sum_{\alpha=1}^{n} P^{p \alpha} \operatorname{grad} \mu_{\alpha} ; p=1, \ldots, n-h . \tag{2}
\end{equation*}
$$

Substituting from (1) into (2) in equilibrium:

$$
\begin{equation*}
\mathbf{o}=\operatorname{grad} A^{p o}=-\sum_{\alpha=1}^{n} P^{p \alpha} M_{\alpha} \operatorname{grad} g_{\alpha}^{o} ; p=1, \ldots, n-h . \tag{3}
\end{equation*}
$$

Substituting from (4.333) into (3), eq. (4.335) follows immediately.

