Page 216, equation (4.344)

First, note that combining (4.30) with (4.26) we obtain:

$$
\begin{equation*}
\sum_{\alpha=1}^{n} S_{\sigma \alpha} J^{\alpha}=\sum_{\alpha=1}^{n} S_{\sigma \alpha} \frac{r_{\alpha}}{M_{\alpha}}=0 \quad \sigma=1, \ldots, h \tag{1}
\end{equation*}
$$

Balance (4.14) gives for $\mathbf{v}_{\alpha}=\mathbf{o}$:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{V} \rho_{\alpha} \mathrm{d} v=\int_{V} r_{\alpha} \mathrm{d} v \quad \alpha=1, \ldots, n . \tag{2}
\end{equation*}
$$

Multiplying (2) by a constant $S_{\sigma \alpha} / M_{\alpha}$ it follows:

$$
\begin{equation*}
\left(S_{\sigma \alpha} / M_{\alpha}\right) \frac{\mathrm{d}}{\mathrm{~d} t} \int_{V} \rho_{\alpha} \mathrm{d} v=\left(S_{\sigma \alpha} / M_{\alpha}\right) \int_{V} r_{\alpha} \mathrm{d} v \quad \sigma=1, \ldots, h ; \alpha=1, \ldots, n \tag{3}
\end{equation*}
$$

Summing up (3) for all constituents:

$$
\begin{gather*}
\sum_{\alpha=1}^{n}\left(S_{\sigma \alpha} / M_{\alpha}\right) \frac{\mathrm{d}}{\mathrm{~d} t} \int_{V} \rho_{\alpha} \mathrm{d} v=\sum_{\alpha=1}^{n}\left(S_{\sigma \alpha} / M_{\alpha}\right) \int_{V} r_{\alpha} \mathrm{d} v, \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \int_{V} \sum_{\alpha=1}^{n}\left(S_{\sigma \alpha} / M_{\alpha}\right) \rho_{\alpha} \mathrm{d} v=\int_{V} \sum_{\alpha=1}^{n}\left(S_{\sigma \alpha} / M_{\alpha}\right) r_{\alpha} \mathrm{d} v=0 \quad \sigma=1, \ldots, h \tag{4}
\end{gather*}
$$

where (1) was used in the last equality.
Taking into account that $\rho_{\alpha} \mathrm{d} v=w_{\alpha} \mathrm{d} m$ (see the book) and multiplying (4) by E^{σ} (a constant), eq. (4.344) follows.

