Page 220, equation (4.361)

The Gibbs-Duhem equation (4.221) in a two-component mixture reads as follows:

$$
w_{1} \frac{\partial \tilde{g}_{1}}{\partial w_{1}}+w_{2} \frac{\partial \tilde{g}_{2}}{\partial w_{1}}=0
$$

which enables to express the second partial derivative with the aid of the first one:

$$
\begin{equation*}
-\frac{\partial \tilde{g}_{2}}{\partial w_{1}}=\frac{w_{1}}{w_{2}} \frac{\partial \tilde{g}_{1}}{\partial w_{1}} . \tag{1}
\end{equation*}
$$

Using (1), equation (4.359) can be rewritten

$$
\begin{equation*}
\frac{\partial \tilde{g}_{1}}{\partial w_{1}}-\frac{\partial \tilde{g}_{2}}{\partial w_{1}}=\frac{\partial \tilde{g}_{1}}{\partial w_{1}}\left(1+\frac{w_{1}}{w_{2}}\right)>0 . \tag{2}
\end{equation*}
$$

Because mass fractions are positive, (4.361) follows from (2) immediately.

