Page 236, equation (4.427)
Making partial derivative of definition (4.86) gives:

$$
\begin{equation*}
\frac{\partial \hat{f}_{\alpha}}{\partial \rho_{\alpha}}=\frac{\partial \hat{u}_{\alpha}}{\partial \rho_{\alpha}}-T \frac{\partial \hat{s}_{\alpha}}{\partial \rho_{\alpha}}, \quad \alpha=1, \ldots, n . \tag{1}
\end{equation*}
$$

From (4.426) we get:

$$
\begin{align*}
\frac{\partial \hat{s}_{\alpha}}{\partial \rho_{\alpha}} & =-\frac{\partial}{\partial \rho_{\alpha}}\left(\frac{\partial \hat{f}_{\alpha}}{\partial T}\right)=-\frac{\partial}{\partial T}\left(\frac{\partial \hat{f}_{\alpha}}{\partial \rho_{\alpha}}\right)=-\frac{\partial}{\partial T}\left(\frac{R T}{M_{\alpha} \rho_{\alpha}}\right)= \\
& -\frac{R}{M_{\alpha} \rho_{\alpha}}, \quad \alpha=1, \ldots, n \tag{2}
\end{align*}
$$

where (4.429) was used in the last but one equality. Substituting (4.429) and (2) into (1) gives:

$$
\frac{R T}{M_{\alpha} \rho_{\alpha}}=\frac{\partial \hat{u}_{\alpha}}{\partial \rho_{\alpha}}+\frac{R T}{M_{\alpha} \rho_{\alpha}} \quad \Rightarrow \quad \frac{\partial \hat{u}_{\alpha}}{\partial \rho_{\alpha}}=0, \quad \alpha=1, \ldots, n .
$$

Consequently, $\hat{u}_{\alpha}\left(T, \rho_{\gamma}\right)$ simplifies to $\hat{u}_{\alpha}(T)-$ cf. also (4.86), (4.413), and (4.426).

