Page 154, equations (4.44) and (4.45)

Introducing (4.33) into l.h.s. of (4.43) and (4.40) into r.h.s. of (4.43) we obtain:

$$
\sum_{\alpha=1}^{n} J^{\alpha} \vec{e}_{\alpha}=\sum_{p=1}^{n-h} J_{p} \sum_{\alpha=1}^{n} P^{p \alpha} \vec{e}_{\alpha}=\sum_{\alpha=1}^{n} \sum_{p=1}^{n-h} J_{p} P^{p \alpha} \vec{e}_{\alpha} .
$$

Multiplying by $\vec{e}_{\beta}(\beta=1,2, \ldots, n)$ results in:

$$
J^{\beta}=\sum_{p=1}^{n-h} J_{p} P^{p \beta}
$$

which is (4.44).

Multiplying (4.43) by \vec{g}_{r} and referring to (A.85) we have:

$$
\vec{J} \cdot \vec{g}_{r}=\sum_{p=1}^{n-h} J_{p} \vec{g}^{p} \cdot \vec{g}_{r}=J_{1} \vec{g}^{1} \cdot \vec{g}_{r}+\cdots+J_{r} \vec{g}^{r} \cdot \vec{g}_{r}+\cdots+J_{n-h} \vec{g}^{n-h} \cdot \vec{g}_{r}=J_{r}
$$

Then using (A.86) we obtain following expression:

$$
J_{r}=\vec{J} \cdot \vec{g}_{r}=\vec{J} \cdot \sum_{p=1}^{n-h} g_{r p} \vec{g}^{p}=\sum_{p} g_{r p} \vec{J} \cdot \vec{g}^{p}
$$

which can be further modified introducing (4.40):

$$
=\sum_{p} g_{r p} \vec{J} \cdot \sum_{\alpha=1}^{n} P^{p \alpha} \vec{e}_{\alpha}=\sum_{\alpha} \sum_{p} g_{r p} P^{p \alpha} \vec{J} \cdot \vec{e}_{\alpha} .
$$

Using (4.33) we finally arrive at:

$$
J_{r}=\sum_{\alpha} \sum_{p} g_{r p} P^{p \alpha} J^{\alpha}
$$

which is (4.45).

