Page 186, Gibbs equations

Because $f=\hat{f}\left(T, \rho_{\alpha}\right), \alpha=1, \ldots, n$, cf. (4.160), we have $\rho f=\rho \hat{f}\left(T, \rho_{\alpha}\right)$ and then:

$$
\begin{equation*}
\mathrm{d}(\rho f)=\frac{\partial \rho \hat{f}}{\partial T} \mathrm{~d} T+\sum_{\alpha=1}^{n} \frac{\partial \rho \hat{f}}{\partial \rho_{\alpha}} \mathrm{d} \rho_{\alpha} \equiv \rho \frac{\partial \hat{f}}{\partial T} \mathrm{~d} T+\sum_{\alpha=1}^{n} \frac{\partial \rho \hat{f}}{\partial \rho_{\alpha}} \mathrm{d} \rho_{\alpha} . \tag{1}
\end{equation*}
$$

Substituting from (4.164) and (4.161) into (1), equation (4.201) follows.
Capitalizing upon (1), equation (4.202) can be derived as follows:

$$
\begin{aligned}
\mathrm{d}(\rho u)= & \mathrm{d}[\rho(f+T s)]=\mathrm{d}(\rho f)+\mathrm{d}(\rho T s)=-\rho s \mathrm{~d}(T)+\sum_{\alpha=1}^{n} g_{\alpha} \mathrm{d} \rho_{\alpha}+ \\
& \rho s \mathrm{~d} T+T \mathrm{~d}(\rho s)=T \mathrm{~d}(\rho s)+\sum_{\alpha=1}^{n} g_{\alpha} \mathrm{d} \rho_{\alpha} .
\end{aligned}
$$

The remaining equations require some preliminary considerations. Note, that, cf. (4.195):

$$
\begin{equation*}
\mathrm{d} v \equiv \mathrm{~d}(1 / \rho)=-\left(1 / \rho^{2}\right) \mathrm{d} \rho . \tag{2}
\end{equation*}
$$

From the definition of the mass fraction w_{α}, (4.22), and its property (4.23) two equations follow:

$$
\begin{gather*}
\mathrm{d} w_{\alpha} \equiv \mathrm{d}\left(\rho_{\alpha} / \rho\right)=\left(\rho \mathrm{d} \rho_{\alpha}-\rho_{\alpha} \mathrm{d} \rho\right) / \rho^{2} \tag{3}
\end{gather*} \quad \Rightarrow \mathrm{~d} \rho_{\alpha} / \rho=\mathrm{d} w_{\alpha}+\rho_{\alpha} \mathrm{d} \rho / \rho^{2} .
$$

Substitution of (4.193) and the mass fraction definition (4.22) into the definition (4.187) of the thermodynamic pressure result in following equation:

$$
\begin{equation*}
P=\sum_{\alpha=1}^{n} \rho_{\alpha} g_{\alpha}-\sum_{\alpha=1}^{n} \rho_{\alpha} f_{\alpha}=\rho \sum_{\alpha=1}^{n} w_{\alpha} g_{\alpha}-\rho \sum_{\alpha=1}^{n} w_{\alpha} f_{\alpha}=\rho(g-f) \tag{5}
\end{equation*}
$$

where also (4.192) and (4.92) were used.
Now we are ready to derive equation (4.204) starting with (4.201):

$$
\begin{equation*}
\rho \mathrm{d} f+f \mathrm{~d} \rho=-\rho s \mathrm{~d} T+\sum_{\alpha=1}^{n} g_{\alpha} \mathrm{d} \rho_{\alpha} . \tag{6}
\end{equation*}
$$

The free energy differential is expressed from (6)

$$
\begin{equation*}
\mathrm{d} f=-(f / \rho) \mathrm{d} \rho-s \mathrm{~d} T+(1 / \rho) \sum_{\alpha=1}^{n} g_{\alpha} \mathrm{d} \rho_{\alpha} . \tag{7}
\end{equation*}
$$

The density derivatives in (7) are substituted from (2) and (3):

$$
\begin{equation*}
\mathrm{d} f=\rho f \mathrm{~d} v-s \mathrm{~d} T+\sum_{\alpha=1}^{n} g_{\alpha} \mathrm{d} w_{\alpha}+\left(\mathrm{d} \rho / \rho^{2}\right) \sum_{\alpha=1}^{n} \rho_{\alpha} g_{\alpha} . \tag{8}
\end{equation*}
$$

Definitions (4.22) and (4.192) are introduced into (8) giving:

$$
\begin{equation*}
\mathrm{d} f=\rho f \mathrm{~d} v-s \mathrm{~d} T+\sum_{\alpha=1}^{n} g_{\alpha} \mathrm{d} w_{\alpha}+(g / \rho) \mathrm{d} \rho . \tag{9}
\end{equation*}
$$

The last term in (9) is modified using (2):

$$
\begin{equation*}
\mathrm{d} f=\rho f \mathrm{~d} v-s \mathrm{~d} T+\sum_{\alpha=1}^{n} g_{\alpha} \mathrm{d} w_{\alpha}-\rho g \mathrm{~d} v . \tag{10}
\end{equation*}
$$

Rearrangement of (10) and substitution from (5) end in:

$$
\begin{equation*}
\mathrm{d} f=-s \mathrm{~d} T-\rho(g-f) \mathrm{d} v+\sum_{\alpha=1}^{n} g_{\alpha} \mathrm{d} w_{\alpha}=-s \mathrm{~d} T-P \mathrm{~d} v+\sum_{\alpha=1}^{n} g_{\alpha} \mathrm{d} w_{\alpha} . \tag{11}
\end{equation*}
$$

The last term in (11) can be modified, taking into account (4), as follows:

$$
\begin{align*}
\sum_{\alpha=1}^{n} g_{\alpha} \mathrm{d} w_{\alpha}= & \sum_{\beta=1}^{n-1} g_{\beta} \mathrm{d} w_{\beta}+g_{n} \mathrm{~d} w_{n}=\sum_{\beta=1}^{n-1} g_{\beta} \mathrm{d} w_{\beta}+g_{n}\left(-\sum_{\beta=1}^{n-1} \mathrm{~d} w_{\beta}\right)= \\
& \sum_{\beta=1}^{n-1}\left(g_{\beta}-g_{n}\right) \mathrm{d} w_{\beta} . \tag{12}
\end{align*}
$$

After substitution from (12) into (11), equation (4.204) results.
Derivation of the remaining Gibbs equations is now straightforward. For example, it follows from (4.197) that $\mathrm{d} u=\mathrm{d} f+T \mathrm{~d} s+s \mathrm{~d} T$ and substitution for $\mathrm{d} f$ from (4.204) gives the equation (4.203).

