The Thermodynamics of Linear Fluids and Fluid Mixtures by Pekař \& Samohýl

Exercise 1 to section 4.2

Derive and plot vectors describing reaction stoichiometry and kinetics for the reacting mixture NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$. Consider orthonormal bases $\vec{e}^{\alpha}=\vec{e}_{\alpha}$.

Try to answer before continuing reading.
Numbering of the two components ($n=2$, the space \mathcal{U} is thus 2-dimensional): $1=\mathrm{NO}_{2}, 2=\mathrm{N}_{2} \mathrm{O}_{4}$. The (composition) matrix $\left\|T_{\sigma \alpha}\right\|$ is

$$
\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)
$$

and its rank (h) is one; the number of independent reactions is thus $n-h=1$. The matrix $\left\|S_{\sigma \alpha}\right\|$ can be then selected as

$$
\left(\begin{array}{ll}
1 & 2
\end{array}\right) .
$$

The "atomic" substance E^{σ} is thus NO_{2}.
The vector of molar masses is

$$
\vec{M}=M_{\mathrm{NO}_{2}} \vec{e}^{1}+\vec{M}_{\mathrm{N}_{2} \mathrm{O}_{4}} \vec{e}^{2}
$$

The basis vector of the 1-dimensional subspace \mathcal{W} is

$$
\overrightarrow{f_{1}}=\vec{e}^{1}+2 \vec{e}^{2} .
$$

The stoichiometric matrix of the only one independent reaction can be selected as

$$
\left\|P_{p \alpha}\right\|=\left(\begin{array}{ll}
-2 & 1
\end{array}\right)
$$

and the corresponding independent reaction is $2 \mathrm{NO}_{2}=\mathrm{N}_{2} \mathrm{O}_{4}$. Thus the basis vector of the 1 -dimensional reaction subspace \mathcal{V} is

$$
\vec{g}^{1}=-2 \vec{e}_{1}+\vec{e}_{2} .
$$

The vector of reaction rates can be written in terms of the independent rate or component rates:

$$
\vec{J}=J_{1} \vec{g}^{1}=J^{1} \vec{e}_{1}+J^{2} \vec{e}_{2} .
$$

The spaces and vectors are shown in the figure below. The vector of molar masses is drawn in units of dag $/ \mathrm{mol}$ to fit the available space; for example NO_{2} has the molar weight of $4.6 \mathrm{dag} / \mathrm{mol}$. An example of the reaction rate vector is drawn in red for the case of $J^{1}=-4$, then $J^{2}=2$ as follows from (4.20) and (4.26), and $J_{1}=2$ as follows from (4.45). The relationship between the reaction rate and the component rates, which is given by eq. (4.45) in the book, contains the covariant metric sensor $g_{r p}$. The latter tensor is obtained by the inversion of the contravariant metric tensor $g^{r p}=\vec{g}^{r} \cdot \vec{g}^{p}$. In our case $g^{11}=\vec{g}^{1} \cdot \vec{g}^{1}=5$ and $g_{11}=1 / 5$. Then $J_{1}=J^{1}(-2)(1 / 5)+J^{2}(1 / 5)$.

