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Abstract
This study was conducted as an in vivo experiment in adult miniature pigs with the aim to test 

two new biomaterials. An iatrogenic defect was made into the central femoral diaphysis in the 
experimental animals and subsequently fixated by bridging plate osteosynthesis. Into the defect 
we implanted a cancellous autograft (control group), a pasty injectable scaffold (EXP A), and 
a porous 3D cylinder (EXP B). Radiological examination was performed in all animals at 0, 10, 
20, 30 weeks after surgical procedure and histological assessment was performed. In the newly 
formed bone the osteoblastic activity was monitored. In terms of radiology, the most effective 
method was observed in the control group (completely healed 100%) compared to experimental 
groups EXP A (70.0%) and EXP B (62.5%). Histological assessment showed a higher cell count 
in the place of bone defect in the control group compared to experimental groups. Between the 
experimental groups, a higher count of bone marrow cells was found in group EXP B. Both newly 
developed biomaterials seem to be suitable as replacements for large bone defects, having good 
workability and applicability. However, compared to the control group treated with a cancellous 
autograft, the newly formed bone did not reach the same number of cells settling in and in some 
cases, full radiological healing was not reached. Nevertheless, the material was found to be grown 
into the original bone in all cases within the experimental groups. The new biomaterials have 
a great potential as a substitute in the treatment of large bone defects.

Pig, biomaterial, scaffold, animal model

A large part of scientific research in the field of development of new biomaterials is 
dedicated to the healing of bone defects. This topic is especially important due to 
the constant need to find bone tissue replacement in cases of major bone tissue loss in 
patients. In cases of comminutive fractures with bone tissue loss, corrective osteotomies, 
replacements of neoplastic tissues and revisional osteosynthesis, it is necessary to obtain 
suitable material to fill up the bone defect.

As a golden standard, in the majority of cases autologous cancellous, cortical or cortical-
cancellous grafts are currently used in clinical medicine. Although there are great biological 
advantages associated with these grafts, their major drawbacks include insufficient 
availability of the materials, increased invasiveness and length of the surgical procedure.

Even though there are many commercially produced materials available, the current 
progress requires the development of new materials not only in terms of applicability, 
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but also in relation to the biological support for the original tissue to heal faster and more 
effectively.

General requirements for all biomaterials suitable for implantation include 
biocompatibility, biodegradability, mechanical properties, scaffold architecture and 
manufacturing technology (O’Brien 2011). The diamond concept of bone fracture 
healing interactions includes the utilisation of growth factors, osteoconductive scaffolds, 
osteogenic cells and optimal mechanical environment (Giannoudis et al. 2008). 

Our aim was to develop a biomaterial with good biological and application properties, 
whereas the mechanical stability was left upon the internal fracture fixation. The goal was 
to obtain an easily applicable material with the possibility of good shape adapting to the 
conditions of the bone tissue defect and a potential of good cell migration within the material.

The secondary goal for for the new material was its ability to be used as a carrier of 
bioactive substances or drugs.

Materials and Methods
The study was designed as an in vivo experiment in adult miniature pigs of the Minnesota breed. The observed 

group of experimental animals included both females and castrated males of an average age of 2–4 years and an 
average weight of 70.2 ± 18.3 kg.

During the experiment, the animals were put under general anaesthesia. Lateral approach to the diaphysis of 
the left femur was performed, and an iatrogenic defect was made in the central part of the diaphysis identically 
in all individuals. A 10 mm long defect was created by cutting out a whole piece of the bone using an oscillating 
saw. Subsequently, internal fixation of the iatrogenic defect was done by osteosynthesis with the use of locking 
implants. LCP implants (LCP steel plate 4.5/5.0 broad, 7 holes, 134 mm length, DePuy Synthes, Johnson and 
Johnson, USA) and locking screws (steel locking screw ø 5.0 mm, self-tapping, DePuy Synthes, Johnson and 
Johnson, USA) were used for the fixation. Three locking screws with biocortical introduction were used equally 
in both proximal and distal fragments.

Experimental animals were divided into 3 groups. In the control group (nC = 8) the defect in the central part of 
diaphysis was filled in with a cancellous autograft collected from the left proximal humeral metaphysis. 

In the first experimental group (nA = 10) the defect was filled in with a newly synthetised biomaterial of pasty 
injectable consistency (Plate I, Fig. 1). This material was prepared from 2 g of powder mixture mixed together 
with 3 ml of autologous heparinised blood shortly before implantation during the surgical intervention.

One dose of 2 g of powder mixture contained 0.6 g of bovine freeze-dried collagen (bovine lyophilized 
collagen 100%, Collado, s.r.o., Brno, Czech Republic) and 1.4 g of resorbable bioceramics with a mean particle 
size of 4.21 μm. The bioceramics contained 89 wt % of calcium phosphate and 11 wt % of calcium pyrophosphate 
(Fluka, Switzerland).

In the second experimental group (nB = 8), a 3D porous collagenous cylinder was freely inserted between the 
ends of the main bone fragments using the “press and fit” method (Plate I, Fig. 2). The highly porous collagen/
bioceramics composite cylindrical foams were fabricated by the freeze-drying method according to Prosecká 
et al. (2015). Briefly, 1 wt% concentration of aqueous collagen suspension (bovine lyophilized collagen 100% 
- Collado, s.r.o., Brno, Czech Republic) and 1% wt. of bioceramics with a mean particle size of 4.21 μm (the 
bioceramics contained 89 wt.% of calcium phosphate and 11 wt.% of calcium pyrophosphate - Fluka, Switzerland) 
were mixed together using a disintegrator (5 000 rpm for 5 min). Six millilitres of collagen/bioceramic suspension 
were poured into each hole of a 12-hole well-plate with the addition of 4 mg of nanofibres (polycaprolactone 
nanofibres, 45 000 Da, Sigma-Aldrich, MO, USA) prepared by the “wet-spinning” method (Míša Rampichová, 
Matěj Buzgo, Prague, Czech Republic) used in collagen foam. Samples were freeze-dried in Epsilon 2-10D 
LSCplus lyophilizer (Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany) for two days 
(the temperature of the icecondenser and the shelf temperature was -80 °C and -50 °C, respectively). Dried 
samples were chemically crosslinked via EDC/NHS mixture, purified and freeze-dried again as mentioned above. 

Closure of surgical wound, antibiotic coverage, pain management and post operative management were 
conducted identically in all animals in compatibility with the approved experimental project, according to the 
welfare and ethical principles of the handling of experimental animals.

All animals were further observed for the time period of 30 weeks after the surgical intervention. 
The overall health status of all animals was monitored and radiological evaluation of the bone defect was 

performed at the intervals of 0, 10, 20 and 30 weeks, after surgical procedure. Radiographic images of the left 
femur in mediolateral and craniocaudal projections were obtained in general anaesthesia and the healing status of 
the bone was evaluated by the same radiologist classified as healed, partially healed or unhealed.

Also the presence of periosteal reaction (according to quantity grade 1, 2 or 3) and the possibility of formation 
of a new hypertrophic callus (yes/no) were evaluated.

All animals were euthanized lege artis after 30 weeks and segments of bony tissues in the implanted area 
including the adjacent tissues were dissected and sent for histological examination.
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Histological examination was performed in sections obtained from the observed areas, stained by haematoxylin-
eosin and cellularity/osteoblastic activity in the new formed bone tissue was evaluated (examined in the vision 
field at a × 400 magnification as an average amount of cell in 10 vision fields).

The obtained data were evaluated by basic descriptive statistical methods. Parametric t-test for unpaired 
comparison (Kyplot version 2.0 beta 15-32 bit) was used for statistical data evaluation.

Results

In terms of radiological evaluation, the process of bone defect healing was the most 
effective and had the fastest progress in the control group, where the bone defect was 
filled in with the autogenous cancellous bone graft, and no significant periosteal reaction 
or hypertrophic callus formation was observed (Plate II, Fig. 3). In the majority of cases 
in both experimental groups the bone healing process resulted in a complete healing of 
the bone defect, while in a minority of cases it resulted in a partial healing of the defect. 
However, the healing progress of the defect was slower and with a stronger local reaction 
(periosteal reaction, hypertrophic callus formation) compared to the control group (Tables 
1 and 2, Figs 4 and 5 [Plate II]). From the histological point of view, the newly formed 
compact bone in the control group (defect filled in with cancellous bone autograft) was of 
a higher density with a higher presence of osteons, in comparison with experimental groups 
EXP A and EXP B. Furthermore, a significantly higher cell density localized in the newly 
formed bony structures in the place of defect was noted in the control group in comparison 
with experimental groups EXP A (paste injectable scaffold with autologous blood, 
P ≤ 0.01) and EXP B (prefabricated 3D porous collagenous cylinder, P ≤ 0.001).

Table 1. Radiological evaluation of bone healing.

Group Healing status
 Nonunion Partial Complete

10 weeks after
 Control (n = 7)  0 (0%) 7 (100%) 0 (0%)

surgical procedure
 EXP A - paste scaffold (n = 10) 3 (30%) 7 (70%) 0 (0%)

 EXP B - 3D cylinder scaffold (n = 8) 3 (37.5%) 5 (62.5%) 0 (0%)

20 weeks after
 Control (n = 7)  0 (0%) 1 (14.3%) 6 (85.7%)

surgical procedure
 EXP A - paste scaffold (n = 10) 0 (0%) 4 (40%) 6 (60%)

 EXP B - 3D cylinder scaffold (n = 8) 3 (37.5%) 1 (12.5%) 4 (50%)

30 weeks after
 Control (n = 7)  0 (0%) 0 (0%) 7 (100%)

surgical procedure
 EXP A - paste scaffold (n = 10) 0 (0%) 3 (30%) 7 (70%)

 EXP B - 3D cylinder scaffold (n = 8) 0 (0%) 3 (37.5%) 5 (62.5%)

Table 2. Radiological evaluation of the periosteal reaction and hypertrophic callus formation.

Group Periosteal reaction Hypertrophic
   callus
  No Grade 1 Grade 2 Grade 3 Yes No

10 weeks after
 Control (n = 7)  5 1 1 0 1 6

surgical procedure
 EXP A - paste scaffold (n = 10) 1 3 3 3 4 6

 EXP B - 3D cylinder scaffold (n = 8) 7 1 0 0 1 7

20 weeks after
 Control (n = 7)  5 2 0 0 1 6

surgical procedure
 EXP A - paste scaffold (n = 10) 5 2 1 2 4 6

 EXP B - 3D cylinder scaffold (n = 8) 8 0 0 0 1 7

30 weeks after
 Control (n = 7)  7 0 0 0 1 6

surgical procedure
 EXP A - paste scaffold (n = 10) 8 0 0 2 3 7

 EXP B - 3D cylinder scaffold (n = 8) 8 0 0 0 1 7
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When comparing the experimental groups EXP A and EXP B, higher counts of bone 
marrow cells were present in the newly formed lamellar bone in experimental group B 
(porous 3D collagenous cylinder). The proliferation of perivascular and endothelial cells 
of arterial anastomoses with deposition of lamellar bone and osteon formation was higher 
in experimental group EXP B compared to experimental group EXP A (P ≤ 0.001). A mild 
deposition of trabecules of primary bone activated by periosteal osteoblasts (periosteal 
reaction at the place of periosteum disruption) was found in the place of defect in the 
periosteum in all groups. Morphological look of the newly formed bone in the place of 
defect was similar in all groups (control, EXP A and EXP B).

Discussion

One of the important characteristics of the bone substitute in cases of spatially challenging 
defects of bone tissue or dissected bones is the ability to fill in the missing bone tissue.
One of the possible options is to prepare the exact shape of the missing tissues based on 
previous computed tomography scan. These procedures are usually results of very modern 
technologies such as digital navigation and 3D printing (Inzana et al. 2014; Zhang 
et al. 2019). In some cases it is not possible to apply this approach in advance (emergency 
care) or the spatial arrangement is changeable up to the moment of fracture fixation 
(comminutive fracture). In such cases other types of bone tissue substitutes are convenient 
to fill in the defect thanks to the plastic attributes of injectable scaffolds. The advantage of 
these injectable substitutes is the possibility of mini-invasive procedures (Liu et al. 2019). 
A disadvantage of the pasty injectable substitutes is smaller mechanical support at the 
localisation of the bone defect. In our case we aimed for two possibilities of application.

The first application type was a pasty injectable substitute (group EXP A), which was 
made by mixing the powder mixture with autologous blood. This scaffold type showed 
very good workability and easy applicability into the place of bone defect. In previous 
studies we developed an injectable substitute for smaller bone defects, which can be useful 
in cases such as filling in defects originating from a removal of internal fracture fixation. 
The developed substitute was a hydrogel material based with very good properties but also 
with a major disadvantage when it came to solubility. After application into the bone defect 
with a higher degree of bleeding at the site where the substitute was implanted, dissolution 
and washing out of the injectable scaffold started to occur (Srnec et al. 2018). For the new 
variant of the injectable substitute for extensive bone defects (EXP A) this drawback was 
avoided. In contrast, during the contact of the scaffold of pasty consistency with blood the 
bonds within the scaffold were strengthened and the pasty structure was changed to gel-
like structure which was resistant to washing out by bleeding. This excellent property was 
found to be indispensable for the filling of major bone defects. As a possible disadvantage 
we could consider the lesser porosity of the scaffold, which leads to decreased levels of cell 
elements within the scaffold. With this type of scaffold we also noticed during radiological 
examination after 10 and 20 weeks post surgery a high occurrence of periosteal reaction 
and formation of hypertrophic bone callus. We explain this fact as a sign of an infectious 
process. The process of obtaining peripheral blood in miniature pigs comes with a high 
risk of failing to maintain complete asepsis, which could have lead to contamination 
of the scaffold and signs of a septic process. This process was gradually eliminated in 
all cases by the defence mechanisms in the body, however, we observed a prolonged 
time of healing in this experimental group. Macroscopically, the defects healed in all 
animals in the control and in the experimental groups. During radiological evaluation, 
we observed signs of bone healing process as soon as 30 weeks after surgical procedure 
in 30% of the cases in experimental group A and 37.5% of the cases in experimental 
group B, but we were still able to recognize the original osteotomic line. These cases 
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were later considered from the radiological point of view as partially healed. Although 
we presume that in all of these cases it would have led to a full radiological healing of 
the defect, but in a prolonged time period. We can interpret the results of histological 
examinations of the samples in a similar way. Histologically, there are no major differences 
between the newly formed bone tissue in the control group and the experimental groups. 
A difference was seen in the counts of cells inhabiting the newly formed bone tissue. This 
could mean that the process of inhabiting the bone tissue with cells is slower, leading to 
a prolonged time of healing.

As the second substitute type (experimental group EXP B) we used a scaffold that was 
shaped during its processing (prefabricated 3D cylinder), but the structure of this scaffold 
was spongy with a very good workability. During surgery, the scaffold can be shaped into 
the exact form of the bone defect and can be applied by pressing the spongy substitute 
between bone fragments (“press and fit” method). Such concepts have been used by 
other researchers (Schaefer et al. 2002). Comparing the newly invented scaffold types, 
radiological examination yielded similar results. Histological examination showed better 
cellularity and cell population of the newly formed bone tissue in the case of 3D cylinder 
(EXP B), which can be attributed to a better porosity of the scaffold in comparison with 
the pasty injectable form. Nevertheless, this difference had no influence on the clinical or 
radiological healing of the bone defect when both scaffold types were compared.

Generally, biological material or artificial biomaterial can be used for bone tissue 
substitutes. Based on the place of origin, biological substitutes can be classified as autograft, 
allograft or xenogeneic. From a clinical point of view, autograft substitutes are still considered 
a golden standard, but they increase the invasivity for the patient and do not usually offer 
sufficient amount of material in cases of major bone loss (O’Brien 2011; Zhang et al. 
2019). Due to these reasons we chose the application of an autologous cancellous graft into 
the iatrogenic defect in femur as a control group for comparison of bone healing after the 
application of new synthetic materials.

The clinical use of xenogenous materials is described less often with uncertain long-term 
effect (Hesse et al. 2010; Zhang et al. 2019). Biomaterials seem to be an ideal choice for 
the future of bone defect healing. Aside from standardized attributes, it is possible to easily 
use sufficient amounts according to the size of the defect and to enrich these materials by 
bioactive substances and/or drugs. The most commonly used scaffolds for bone substitutes 
are materials based on collagen and hydroxyapatite. Collagen, as the most common protein 
in the body, provides structural stability, and together with hydroxyapatite it is a major 
component of the bone (O’Brien 2011). Another frequently used natural polymer for 
development of bone substitute is polysaccharide chitosan (Zhang et al. 2019). Numerous 
studies have used these basic components for the development of bone tissue substitutes 
(Du et al. 1999; Liao et al. 2004; Pighinelli and Kucharska 2013; Sathiyavimal et al. 
2019; Wahl and Czernuszka 2006; Wang et al. 2019; Zhao et al. 2002). Beta-tricalcium 
phosphate is now one of the most common synthetic materials used for bone reconstruction 
in orthopaedic and maxillofacial surgery. This biomaterial is easier to be absorbed than 
hydroxyapatite and highly biocompatible (Guillaume 2017; Zhang et al. 2019). In 
a study by Mayr et al. (2015) microporous β-tricalcium phosphate was used alone for 
a bone defect in sheep. After 24 weeks, highly advanced resorption of the β-tricalcium 
phosphate implant and trabecular structure of the new bone was seen (Mayr et al. 2015). 

Due to the reasons mentioned above, as a basic substance for development of new 
biomaterials we preffer to use collagen combined with β-tricalcium phosphate in both 
scaffolds; the time set for bone healing was 30 weeks for both biomaterials. In the case of 
the porous 3D cylinder (EXP B), the basic components of the scaffold were enriched by 
poly(ε-caprolactone) nanofibres. The positive potential of these nanofibres for bone tissue 
engineering has been published (Yoshimoto et al. 2003).
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In conclusion, both new biomaterials seem to be suitable substitutes for the filling of 
large bone defects. They show a very good workability and applicability. Compared to 
the control group treated with an autogenous cancellous graft, the newly formed bone 
tissue did not reach the same level of cell settlement and in some cases there was not a full 
radiological healing of the defect.

Although the radiological healing was not found to be complete in all cases, the 
biomaterial was detected to be grown into the bone in all cases. The new biomaterials 
therefore have a high potential to be used as a substitute in cases with large bone loss. Aside 
from the availability of sufficient amounts of these substitutes, another major advantage is 
the possibility to optimise the healing by supplementation of drugs or bioactive substances. 

In this field, we expect further development of the potential of the material and 
modifications of these bone substitutes. The results of this study show that a strict aseptic 
approach has to be kept during the implantation process. Possible contamination of the 
scaffold can be seen and occurs more often in the case of using a synthetic substitute rather 
than in the case of using an autogenous biological graft during the healing process.
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Plate I
Srnec R. et al.: Femoral ... pp. 163-169

Fig. 1. Experimental group A: A - preparation of the scaffold by mixing autogenous blood with powder substances; 
B - paste injectable scaffold inside of the syringe before application; C-  paste injectable scaffold in the femoral 
defect after application

Fig. 2. Experimental group B: A - prefabricated porous 3D cylinder scaffold; B - scaffold application using of the 
“press and fit” method; C - 3D porous cylindrical scaffold in the femoral defect after application



Plate II

Fig. 5. Radiological evaluation of bone healing: 0, 10, 20 and 30 weeks after implantation – Group EXP B, 
prefabricated porous 3D cylinder scaffold

Fig. 3. Radiological evaluation of bone healing: 0, 10, 20 and 30 weeks after implantation – control group

Fig. 4. Radiological evaluation of bone healing: 0, 10, 20 and 30 weeks after implantation – Group EXP A, 
injectable paste scaffold


