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Abstract: Non-orthogonal signal representation using redundant dictionaries gradually gained
popularity over the last decades. Sparse methods find major application in signal denoising,
audio declipping, time-frequency analysis, and classification, to name a few. This paper is
inspired by the exceptional results of sparse representation classification originally suggested
for face recognition. We compare the method to other common classifiers using simulated as
well as real datasets. In the latter the proposed method is tested with real pressure data from a
bed equipped with a matrix of 30× 11 pressure sensors. Here the method outperforms standard
classification methods (surpassing 91 % accuracy) without need of parameter selection or special
user’s skills. Furthermore it offers a means of dealing with occlusions, whose results are presented
as well.
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1. INTRODUCTION

Over the last decades, research of signal-processing meth-
ods has shifted from orthogonal bases, such as Fourier
basis or Wavelet bases, towards the non-orthogonal sig-
nal representations relying on redundant dictionaries, see
Mallat (2010). Sparse signal representation is a modern
approach to signal modelling which enables us to express
a discrete signal as a superposition of a small number of
vectors, called atoms. Atoms are drawn from a redun-
dant dictionary, which may be constructed analytically
or learned from the data. Hence, compared to bases, re-
dundant dictionaries offer much better adaptability to the
class of signals which are expected in a particular appli-
cation. Sparse representation of signals was successfully
applied in a broad range of domains, such as audio de-
clipping, Zaviska (2020); time-frequency analysis, Mallat
(2010); denoising, Condat (2013); classification, Wright
(2009); etc. The focus of this article is on the last of
the listed applications, the so called sparse representation
classification (SRC), which has been successfully used for
face recognition in the above cited paper.

The aim of this article is to classify in-bed posture of a
person via sparse approximation of the two-dimensional
pressure field. The paper is organised as follows. Section 2
gives an overview of the mathematical framework needed
for sparse representation of signals. Section 3 deals with
the details of the SRC procedure and illustrates its per-
formance on a simulated waveform example. The method
is compared with standard classification methods. Sec-
tion 4 discusses a means of dealing with occlusions and

demonstrates application to real data. SRC is compared
to some of the most common classifiers. Their accuracies
are assessed in terms of misclassification rates for normal
and partially corrupted data obtained from a bed equipped
with a matrix of pressure sensors. Immunity to occlusions
is crucial for our case, because the application lies stress on
robustness even during a partial failure of the measuring
matrix.

2. PRELIMINARIES

In this paper we expect that the signal being processed had
already been sampled at K discrete time instants. Hence
it can be represented by the column vector

f = [f1 f2 f3 . . . fK ]
T
, (1)

where the superscript ‘T’ stands for the transpose and

{fk}Kk=1 are the signal samples.

2.1 Signal representation in orthogonal bases

In many scientific fields, discrete signals (1) are conve-
niently represented using orthonormal bases, i.e., as a
superposition of basis vectors stored in a square matrix
B and a vector c containing K spectral coefficients,

f = Bc. (2)

Perhaps the most common orthogonal representation is
Discrete Fourier basis, for which B contains samples of K
complex exponentials and c stores K complex numbers,
the coefficients of the frequency spectrum.



2.2 Sparse representation of signals

In sparse signal representation we represent the signal f
using a redundant dictionary D, which typically contains
P columns referred to as atoms, and a vector a containing
P coefficients of the representation

f = Da. (3)

Typically the number of atoms P is larger than the
number of their samples K, hence the term redundant
dictionary. The intention here is that making P sufficiently
large may secure that there will be atoms similar to the
processed signal. Therefore a small number of these atoms
should be sufficient to form a good signal approximation.
The representation (3) is referred to as sparse, because
the vector a contains only a small number on non-zero
elements.

Before we proceed to the methods of obtaining sparse
signal representation, we need to recall that a discrete
signal (1) is associated with its `p norm

‖f‖p =

(
K∑

k=1

|fk|p
)1/p

, p ∈ 〈0,∞) . (4)

The cases p = 0, 1, 2 are essential for this work. The `2

norm is perhaps the most common; it is the Euclidean
length of the vector. The `1 norm is the sum of absolute
values of the vector elements. And the `0 “norm” is the
number of non-zero vector elements, although it is not
considered to be a proper norm in the mathematical sense.

Practical digital signal processing has to deal with different
forms of noise. To do so, a small approximation error E > 0
is admitted so that

f ≈ Da, ‖f −Da‖2 ≤ E. (5)

To obtain sparse signal representation, we seek such vector
a which contains as few non-zero coefficients as possible
and, at the same time, satisfies the condition (5). In other
words, we are aiming to minimize ‖a‖0 while keeping the
approximation error below a pre-defined positive constant
E.

Contemporary techniques cannot find the exact solution
of above stated problem if the problem is too large, for
we would have to test too many combinations of atoms.
Nevertheless, there are greedy algorithms for finding a
suboptimal solution, which is often not far from the true
solution, see Mallat (2010).

2.3 Orthogonal matching pursuit

At the outset of our research, we relied on the orthogonal
matching pursuit (OMP), an iterative approach which
starts signal approximation with one atom (i.e. only one
non-zero element in a) and iteratively admits new atoms to
the approximation. During each iteration, the coefficients
of included atoms are updated via least-squares fit, i.e.,
using matrix inversion. The error E gradually decreases
with iteration and the algorithm is terminated once the
condition (5) is satisfied.

OMP often works well for a small number of atoms, but
once an atom is admitted into the representation, it re-
mains there even if the addition of new atoms and the

orthogonal update would render its amplitude negligible.
In some applications OMP may be prone to poor perfor-
mance and numerical instability, which occurred during
our research. Once we admitted too many atoms into
the representation, their amplitude ‘blew up’ during the
inversion process. This may be attributed to the greediness
of the OMP.

2.4 Basis pursuit

The numerical instability of the OMP (which is an `0

approach) may be mitigated via the so called `1 relaxation,
see Mallat (2010). Basis pursuit minimizes the modified
functional

QB(a) = ‖Da− f‖22 + λB ‖a‖1 (6)

instead of the original `0 problem

Q(a) = ‖Da− f‖22 + λ ‖a‖0 . (7)

In many cases minimization of (6) and (7) leads to
the same solutions, but minimization of the former is
much simpler for the contemporary techniques. There has
been an extensive research of `1 algorithms. For instance,
MATLAB supports this form of minimization through the
lasso function, which is based on the coordinate descent
method of Friedman (2010). This frees the user from the
study of the abstruse implementation details of available
`1 algorithms.

3. SPARSE REPRESENTATION CLASSIFICATION

The reader may wonder how to construct a good dictio-
nary. One may merge several bases, e.g., Fourier basis F
and Haar basis H, to form a dictionary by appending them
into one larger matrix

D = [F H] . (8)

Unfortunately, such analytical construction of dictionaries
requires a great deal of experience.

When we have a dataset representing the typical signals
which occur in our application, we may use these data
to construct the dictionary. There are a number of dic-
tionary learning algorithms, see Ramirez (2010). Various
dictionary-learning processes typically involve three com-
mon parameters: the regularisation constant γ, the number
of atoms P and the number of learning iterations. Their
appropriate selection normally requires a time-consuming
crossvalidation process.

Perhaps the simplest approach to dictionary learning is
the SRC method presented by Wright (2009). Assume we
have classes labelled 1, 2, . . . , N associated with training
observations stacked into matrices D1,D2, . . . ,DN , re-
spectively. (We assume that all training observations had
already been normalised so that each column of these
matrices has unit `2 norm.) In the learning phase, all
available observations are simply concatenated to form the
dictionary

D = [D1 D2 · · · DN ] . (9)

In the classification phase, SRC uses this dictionary to
express a new observation f in a sparse way; in our case
through the minimization of (6). The coefficients thus
obtained may be split into shorter vectors



a =


a1

a2

...
aN

 (10)

whose heights match the widths of the corresponding ma-
trices D1,D2, . . . ,DN . These are then used to calculate
approximation errors en induced when the coefficients of
the corresponding class only are kept in the approxima-
tion.

en = ‖f −Dnan‖2 , n = 1, 2, . . . , N (11)

The observation is classified into the class with the smallest
error en, in other words, into the class whose coefficients,
used alone, provide the most accurate representation of
the observation f. (We will illustrate these statements in
the subsequent sections using two different classification
examples.)

The reader may be concerned about the computational
burden of the `1 optimization in practice. It is true that
searching through a large dictionary would correspond to
long classification times, but the datasets used in this work
comprised only of hundreds of training samples and the
whole bed pressure field in Section 4 was sampled once
per five seconds. Therefore there were no issues with the
feasibility of real time classification.

SRC approach seems especially advantageous in situations
when the training database is small. In such cases the
computational complexity of the `1 optimization remains
amiable, yet we can do without the selection of dictionary
learning parameters since SRC involves no iterative train-
ing process.

3.1 Simulated example: Waveform data

We will examine a synthetic one-dimensional classification
example before we proceed to the practical application in
the next section. We decided to use the example originally
proposed by Breiman (1984) and later popularized by
Hastie (2010), as it is labelled as a ‘difficult pattern
recognition problem’ by the latter author. There are three
classes and the predictors are defined as

Xj =


Uh1(j) + (1− U)h2(j) + εj , Class 1,

Uh1(j) + (1− U)h3(j) + εj , Class 2,

Uh2(j) + (1− U)h3(j) + εj , Class 3.

(12)

where j = 1, 2, 3, . . . , 21, U is a random variate with
uniform distribution on (0; 1), εj are standard normal
variates, and the hl are the shifted triangular waveforms

h1(j) = max(6− |j − 11| , 0),

h2(j) = max(6− |j − 15| , 0),

h3(j) = max(6− |j − 7| , 0).

(13)

There are 100 training observations per class, which ac-
counts for a total of 300 training observations.

To illuminate this rather elaborate mathematical descrip-
tion, we provide Figure 1, which displays three random
observations for each of the three classes.
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Fig. 1. The three classes of the waveform example. Gener-
ating triangular functions (dashed) which are summed
to produce random instances of noiseless observations
(solid lines). These are eventually corrupted by noise
to produce the simulated data (dotted lines). Partic-
ular observations are distinguished by colours.

A classifier is trained using the 300 observation. Then it is
assessed using 500 new test observations. The generation of
datasets, training of the classifier and its test are repeated
ten times, so that we get an estimate of the mean accuracy
for each classifier. Hastie (2010) provides the following
table of error rates for some of the most popular classifiers.
The Bayes prediction rate is also included.

Table 1. Error rates for waveform data, Hastie
(2010) p. 454. The values are averages over
ten simulations, with the standard error of the

average in the parentheses.

Technique Error rate

Training Test

LDA 0.121(0.006) 0.191(0.006)
QDA 0.039(0.004) 0.205(0.006)
CART 0.072(0.003) 0.289(0.004)
FDA/MARS (degree = 1) 0.100(0.006) 0.191(0.006)
FDA/MARS (degree = 1) 0.068(0.004) 0.215(0.002)
MDA (3 subclasses) 0.087(0.005) 0.169(0.006)
MDA (3 subclasses, 4 df) 0.137(0.006) 0.157(0.005)
PDA (4 df) 0.150(0.005) 0.171(0.005)

SRC 0 (0) 0.225(0.006)

Bayes 0.140



The error rates of SRC (listed directly above the Bayes
rate) are worse than the average of the other methods.
Nevertheless, the example is excellent for demonstration
of the details of the SRC algorithm.

All 300 training observations, such as those in Figure 1,
were used for construction of the dictionary (9). Perfect
accuracy on training data is the expected behaviour of the
method, because this situation corresponds to solving (5)
with one of the columns in the dictionary D being equal to
the signal f. We get the sparsest representation possible,
since only one non-zero coefficient in a is needed.

We will now move to the behaviour on test dataset. Of
course, the situation is less favourable in this setting.
We need multiple coefficients, but they are still relatively
sparse, as we can see in Figure 2 (top).
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Fig. 2. Sparse coefficients, a, of an observation correctly
classified into Class 1 (top) and class errors en corre-
sponding to the Classes 1–3 (bottom).

There are only 10 non-zero coefficients in a so the repre-
sentation can be considered quite sparse. The observation
f which is being analysed corresponds to Class 1 and,
obviously, coefficients of this class preponderate. Some
coefficients of the Classes 2 and 3 are present as well, yet
only those of the former attain pronounced magnitudes.
This signal f is shown in the Figure 3 so that the reader
may compare it with the typical training examples in
Figure 1.
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Fig. 3. Signal and its approximations calculated using
coefficients of its sparse representation.

Coefficients of the classes may be used to compute the ap-
proximations of the observed signal f. The approximation
Da uses all coefficients, thereby exhibits the best accuracy.
Contributions from different classes, D1a1, D2a2, and
D3a3, are shown in Figure 3 as well.

A glance at the figure may assures us that the Class 1
is the most likely. But the computer cannot perform
such visual analysis of the waveforms. Instead, it may
compute the `2 errors between the signal f and each of
these approximations according to (11). The results are
displayed in Figure 2 (bottom). The error of Class 1 is the
smallest, which is in accordance with our visual analysis.

4. DEALING WITH OCCLUSIONS

One of the desirable features of SRC is its ability to
deal with concentrated noise, such as extremely dark or
bright spots on photographs. We will describe a different
application where this feature is also required.

4.1 Bed pressure measurement

There are automated systems in healthcare facilities which
require a means of classification of a patient’s posture
when staying in bed. Examples may be sleep monitoring or
decubitus prevention. We will not venture to describe their
details here. Instead we will confine our discussion to the
fact that a special mattress may be equipped with a matrix
of pressure sensors which measure the pressure field. In our
case, the bed was covered with a matrix of 30×11 sensors.
Figure 4 depicts a few examples of such pressure fields.
Each column corresponds to a different body positions and
rows are associated with different test subjects.



Fig. 4. Signal examples from the bed pressure dataset.

The Classes 1–4 correspond to the subjects measured in

(1) supine,
(2) left lateral,
(3) right lateral, and
(4) prone position.

There were 6 test subjects of various weights and heights.
The dataset contains 736 different images of the pressure
field and the data are, naturally, noisy. This classification
task is commonly solved via more involved methods of
feature extraction, such as Hung (2015), but authors such
as Wright (2009) or Liu (2013) have shown that, using
SRC, we may dispense with these methods.

4.2 Adapting to occlusions

Wright (2009) described a means of enlarging dictionary so
as to include the anticipated occlusions into the dictionary.
In its simplest form this is achieved by appending an
identity matrix I to the dictionary. Therefore, instead of
using (9), we concatenate the matrices

D = [D1 D2 · · · DN I] . (14)

When the user has some additional information concerning
the occlusions, such as their typical sizes or most probable
locations, other matrices may be appended in place of
the identity matrix. For instance, we know that if a fault
occurs, it disables sensors in the whole row of the mattress.
There are 30 such rows in the mattress. Therefore it is

more appropriate to append a matrix which contains all
30 instances of admissible errors.

Note that we do not need to add all possible combinations
of failed rows because this task is, indeed, solved by the `1

sparse representation.

4.3 Numerical experiment

SRC and some of the most common classifiers were as-
sessed using the bed pressure dataset. Their error rates
were estimated using the 6-fold crossvalidation procedure.
In each fold, one of the subjects was left out for testing, and
remaining five subjects were used for training. The results
are listed in the first numerical column of the following
table.

Table 2. Error rates for bed pressure data. The
error rates were obtained using crossvalidation.

Test error rate

Technique
Without
occlusions

Occluded
by zeroes

Occluded
by ones

LDA 0.240 0.595 0.486
LDA* 0.190 0.199 0.199
QDA* 0.385 0.374 0.375
SVM 0.140 0.236 0.187
SVM* 0.148 0.162 0.159
KNN, K = 1 0.149 0.207 0.165
KNN*, K = 1 0.151 0.148 0.148
CART 0.486 0.511 0.496
CART* 0.455 0.451 0.451
Bagged tree 0.242 0.263 0.251
Bagged tree* 0.217 0.218 0.213

SRC 0.087 0.086 0.090

Two more separate tests were performed. During the cross-
validation test fold was enlarged by artificially generated
occlusions to test the robustness of the classifiers. Error
rates soared for most of the classifiers, while the accuracy
of SRC remained virtually unaltered.

To make the comparison fair, training sets of the common
classifiers marked with asterisk were enhanced. They were
trained using an enlarged dataset, which was created by
occluding different rows of the training observations. Since
there are 30 rows in the bed, and the data may be
occluded either by zeros or ones, this corresponds to a
61-fold enlargement of the training dataset. (The signals
without occlusions were left in the training dataset as
well.) Training of QDA was made possible by this enriched
dataset, since with the dataset without occlusions it failed.

Fig. 5. Observed data, data corrected by SRC, and original
image.
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Fig. 6. Sparse coefficients, a, of an observation correctly
classified into Class 1 (top) and class errors en corre-
sponding to the Classes 1–4 and occlusions (bottom).

5. CONCLUSION

This paper shows how to implement a robust algorithm
capable of practical classification of patients’ posture in
bed. SRC requires no feature extraction, thereby greatly
simplifies the design of the classifier by avoiding selection
of parameters, which would require estimation trough a
crossvalidation process. The proposed method is relatively
simple, can be implemented in MATLAB and, as it was
demonstrated, it is suitable for processing of measured
real-world signals. It was shown that the method inher-
ently deals with occlusions exceptionally well.

We would like to focus our future research on the D-
KSVD algorithm introduced by Aharon (2006). Its may be
more attractive for the classification in embedded devices.
Compared to SRC, D-KSVD is reported to be successful
at reducing computational burden by compacting the
dictionaries, albeit at the cost of sacrificing some accuracy,
see Jiang (2016).
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