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Abstract—This paper demonstrates existence of chaotic and
hyperchaotic self-oscillations observed inside principal circuit
topology of harmonic oscillator with cross-coupled transistor
pair. Analyzed autonomous dynamical system is based on the
simplified model of both transistors having nonlinear forward
transconductance and divided resonant tanks. Numerical analysis
covers calculation of two largest Lyapunov exponents, and
long-time structural stability of generated strange attractors is
verified via experimental construction and measurement of flow-
equivalent simple lumped circuit.

Index Terms—chaos, chaotic oscillator, hyperchaos, Kaplan-
Yorke dimension, Lyapunov exponent, strange attractor

I. INTRODUCTION

Deterministic chaos can be roughly considered as a long-
time unpredictable solution of differential equations having at
least one scalar nonlinearity and without stochastic process.
Since investigated mathematical model can be dimensionless
chaos belongs to universal phenomena reported from nature
sciences as well as technical disciplines.

Hyperchaotic self-oscillations belongs to a very complex
dynamical phenomena associated with autonomous lumped
electronic systems with at least four degrees of freedom [1].
Required dimensionality can be achieved willingly by circuit
realization of prescribed mathematical model or via parasitic
properties of used active devices. Experimental observations
in the latter case can be misinterpreted as a thermal noise or
similar stochastic process.

Analog design engineers are interested in construction of
the chaotic oscillators for many decades. Special attention is
usually devoted to the simplicity of final circuit, requirement
of cheap and off-the-shelf active components, simple change
of internal parameter of original math model, good agreement
between theory and real measurement, structural stability of
generated attractor, and reproducibility of practical results.
Chaos-oriented enthusiasts are recently focused on fractional-
order chaotic systems [2], chaotic oscillators with memristors
and/or other mem-elements [3], hidden attractors revealed in
mechanic or electrical engineering system [4], multi-stability
[5], boundary surfaces [6], [7] and similar interesting topics.

This brief paper presents hyperchaotic oscillator that can
be, from the circuit point of view, undoubtedly considered
as one of the simplest examples. Since hyperchaotic behavior
requires four degrees of freedom final network contains only

four accumulation elements. Also, the hyperchaotic motion is
characterized by two positive Lyapunov exponents (LE), i.e.,
two neighboring trajectories simultaneously expands in two
directions.

II. MATHEMATICAL MODEL OF OSCILLATOR

Fundamental circuit structure of a harmonic oscillator with
cross-coupled transistors is shown in Fig. 1a. In further text,
this configuration will be analyzed as: firstly isolated, that
is without external driving forces and load, and secondly,
using transistors modelled exclusively by nonlinear forward
transconductance approximated by a cubic polynomial. Doing
so, the following set of ordinary differential equations can be
derived for mentioned

C1
dv1
dt

= −iL1 − âv32 − b̂v2, L1
diL1

dt
= v1,

C2
dv2
dt

= −iL2 − ãv31 − b̃v1, L2
diL2

dt
= v2 (1)

where state vector is x = (v1, iL1, v2, iL2)
T . Equilibrium

points are all real solutions of nonlinear problem dx/dt = 0.
Obviously, resulting algebraic equations have only a single
zero solution, namely point xeq = (0, 0, 0, 0)T . Since we are
interested in the so-called self-excited strange attractors, origin
needs to be the unstable fixed point. For further analysis,
assume equivalency b̂ = b̃ = b, i.e., forward transconductance
of both transistors has the same slopes near zero. Jacobi
matrix is a function of parameter b, and the local vector field
geometry near origin is defined by the eigenvalues

λ1,2 = −1

2
(b±

√
b2 − 4), λ3,4 =

1

2
(b±

√
b2 − 4) (2)

Obviously, geometry near origin changes its nature for b = 2
where eigenvalues are λ1,2 = −1, λ3,4 = 1. The lower values
0 ≤ b ≤ 2 lead to a geometrical combination of stable and
unstable spiral (two eigen planes). As b decreases real parts of
complex conjugated eigenvalues decrease as well. Limit case
b = 0 leads to a pair of the pure imaginary eigenvalues, that is
λ1,2 = ±j, λ3,4 = ±j. The larger values of b results into flow
movement along four eigen vectors (two stable and pair of
unstable). Finally, negative values of parameter b do not give
good physical sense since collector current of both transistors
is reversed.
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Models of both transistors are considered on the high level
of abstraction, without the parasitic resistive and accumulation
elements that include additional degrees of freedom and terms
inside differential equations. This kind of modelling allows us
to create a maximally general mathematical description of the
autonomous dynamical system that covers large variety of real
electronic circuits. In fact, “discovered” circuit represents two
loss-less parallel resonant tanks with double-sided nonlinear
coupling, see Fig. 1b. Nonzero cubic terms â, ã are needed to
obtain one- or two-dimensional volume expansion in the state
space, that is, to observe chaotic and hyperchaotic steady state.
To reach topologically simpler chaotic motion, one coupling
transconductance can be linear.

Fig. 1. Harmonic oscillator having cross-coupled pair of general transis-
tors: a) fundamental network, b) simplified circuit with polynomial forward
transconductance (two voltage controlled current sources)

III. NUMERICAL ANALYSIS

Without losing a chance to observe complex random-like
behavior, the normalized numerical values of all accumulation
elements can be fixed unity, i.e. L1 = L2 = 1 H and
C1 = C2 = 1 F, which corresponds to the fundamental
oscillation frequency f = 159 mHz. This is great advantage
since oscillator theoretically generates chaotic or hyperchaotic
waveforms for arbitrarily chosen time and impedance scaling.
Therefore, there is no need to accept extreme differences
between numerical values of capacitors and/or inductors.

In general, searching for the robust chaotic solution inside
arbitrary dimensional hyperspace of system parameters can be
understood as optimization task [8] utilizing flow quantifier as
objective function. Shaping factors associated with nonlinear
functions â, b̂, ã, b̃ can be encoded into bit representation such
that nature-inspired optimization routine can be used. Doing
so, in our case, scanned hyperspace has only three dimensions
with the additional volume restrictions â<0 and ã<0.

Full grid searching approach provides several prosperous
sets, for example ã = −1, b̂ = b̃ = 1, â = −0.1. Numerical
integration of dynamical system (1) by using a fourth order
Runge-Kutta method, final time 1000 s and time step 10
ms having this set of internal parameters is provided in
rainbow scaled colored images by means of fig. 2. Solution
of both autonomous and driven dynamical system can be
quantified and classified by using concept of LE. Number
of LE corresponds to order of mathematical model. For

Fig. 2. Numerical integration of fourth order mathematical model (1),
state space visualized from different 3D perspectives, a) v1–iL1–v2, b)
v1–iL1–iL2, c) v1–v2–iL2, d) iL1–v2–iL2.

chaos, the largest LE needs to be positive, set of LE that
results into the hyperchaotic movement possess two positive
values. For dissipative dynamics, sum of all LE is negative.
Topographically scaled surface-contour plot of the largest LE
as two-dimensional function of â and ã for different values of
parameter b̂ = b̃ = b is provided via fig. 3. Black dots represent
parameter places with distinguished hyperchaotic motion. The
“most chaotic” case is obtained for the internal parameters
â = −0.23, ã = −0.03, b = 4 and has the largest LE about
0.184. The “most hyperchaotic” case can be observed for
values â = −0.01, ã = −0.65, b = 4 and is characterized
by two positive LE, namely 0.138, 0.064. Of course, these
quantities can be considered as local maxima since associated
with a finite volume of parameter hyperspace addressed by
calculation routine.

Figure 4 demonstrates the fundamental property of chaotic
system, sensitivity of system solution to small uncertainties of
group of initial conditions. To do this, 104 initial states (black
dots) are generated with normal distribution and standard
deviation 10−2 around origin of a state space. After 1 s
short time (red dots), 5 s medium time (green dots) and 50 s
long time (blue dots) evolution the final states are stored and
visualized. Obviously, long time end points associated with
huge number of initial states will eventually fill entire strange
attractor, which is only portion of 4D state space, leading to
non-integer geometric dimension of evolved strange attractor.
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Fig. 3. Flow quantification via the largest LE, a) b = 0.1, b) b = 0.3,
c) b = 0.5, d) b = 0.7, e) b = 1, f) b = 1.5, g) b = 2, h) b = 2.5, i) b = 3,
j) b = 4.

System parameters are the same as adopted to numerically
simulate fig. 2 (upper two plots provided) and for the “most
hyperchaotic” set of the system parameters mentioned above
(lower two plots).

Note that analyzed dynamical system is invariant under
complete inversion of the system coordinates. In addition,
geometry of the vector field suggests that there are several
coexisting attractors, see fig. 5 for four examples. Orange
trajectory evolves for initial conditions x0 = (0.1, 0, 0, 0)T ,
blue orbit occurs if x0 = (1, 1, 0, 0)T , green orbit can be
observed thanks to the symmetry for x0 = (−1,−1, 0, 0)T ,
and red attractor rises for x0 = (1, 0, 0, 0)T . It has been
verified numerically that dynamical system (1) exhibits multi-
stability and covers both self-excited and the so-called hidden
chaotic attractors [9].

Fig. 4. Sensitivity of analyzed system solution to the small deviations in the
initial conditions, plotted in state space cubes: a) v1–iL1–v2, b) v1–iL1–iL2,
c) v1–iL1–v2, d) v1–iL1–iL2. For details, consult corresponding text pas-
sage.

IV. EXPERIMENTAL VERIFICATION

Synthesis of the fully analog chaotic oscillators based
on known mathematical description is easily solvable prob-
lem having multiple correct solutions. Many papers were
already devoted to this task, for example cookbooks [10],
[11]. Probably the most straightforward design approach is
based on analog computer concept where necessary mathe-
matical operations are done by using three building blocks:
inverting summing integrator, differential amplifier (inverting
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Fig. 5. Coexistence of several different state attractor within the state space,
plane projection: a) v1–iL1–v2, b) v1–v2–iL2.

summing amplifier being its special case), and two-port with
desired nonlinear transfer function. Time domain waveforms
associated with the state attractors that are expected to be
generated by designed circuit do not have significant DC
frequency components. Thus, the active operational amplifier-
based realization of the lossless inverting summing integrators
can be adopted. Final schematic including numerical values
of the passive elements is provided in fig. 6. For experimen-
tal measurement, time constant of integrators were chosen
τ = RC = 104 · 10−8 = 100 µs. To implement
the cubic polynomial transfer functions, four quadrant analog
multipliers AD633 were utilized. Chaotic oscillator contains
seven commercially available integrated circuits: single cheap
TL084, pair of AD844 and four AD633. In given schematic,
TZ represents node initially dedicated for compensation of
frequency curves.

Fig. 6. Detailed circuitry implementation of analog chaotic oscillator based
on harmonic oscillator with cross-coupled transistors.

(a)

(b)

(c)

(d)

(e)

Fig. 7. Experimental verification of the chaotic oscillator, plane projection:
a) va-vb, b) va-vd, c) va-vc, d) vc-vd, e) vb-vc
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Behavior of designed electronic system is described by
following set of ordinary differential equations

−C1
dva
dt

=
vb
R3

+
vc
R7

− K2

R1
v3c , C2

dvb
dt

=
va
R5

,

−C3
dvc
dt

=
vd
R8

+
va
R4

− K2

R2
v3a, C4

dvd
dt

=
vc
R6

(3)

where K = 0.1 is internally trimmed constant of multipliers.
Chaotic waveforms contain a huge number of harmonics

and has continuous broad-band frequency spectrum. Selected
oscilloscope screenshots are provided in fig. 7. Observed
experimental results are in good accordance with theoretical
assumptions. Different route-to-chaos scenarios can be traced
via change of the system parameters â or ã, i.e. by adjusting
variable resistors R1 or R2.

V. CONCLUSION

This paper briefly describes simple transformation process
from harmonic oscillator based on the cross-coupled transistor
pair into hyperchaotic oscillator. It has been numerically
proved that change of output current orientation associated
with transconductance of both transistors also leads to the
complex behavior including interesting, strange attractors.

ACKNOWLEDGMENT

This paper is realized within the project Quality
Internal Grants of BUT (KInG BUT), Reg. No.
CZ.02.2.69/0.0/0.0/19 073/0016948, which is financed
from the OP RDE.

REFERENCES

[1] J. Petrzela, and L. Polak, “Hyperchaotic self-oscillations of two-stage
class C amplifier with generalized transistors,” IEEE Access, vol. 9, pp.
62182–62194, 2021.

[2] J. Yao, K. Wang, P. Huang, L. Chen, and J. A. Tenreiro-Machado,
“Analysis and implementation of fractional-order chaotic system with
standard components,” Journal of Advanced Research, vol. 25, pp.
97–109, 2020.

[3] K. Rajagopal, C. Li, F. Nazarimehr, A. Karthikeyan, P. Duraisamy, and
S. Jafari, “Chaotic dynamics of modified Wien bridge oscillator with
fractional order memristor,” Radioengineering, vol. 28, pp. 165–174,
2019.

[4] N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, R. V. Yuldashev,
“Hidden attractors in dynamical models of phase-locked loop circuits:
limitations of simulation in MATLAB and SPICE,” Communications in
Nonlinear Science and Numerical Simulation, vol. 51, pp. 39–49, 2017.

[5] V.-T. Pham, D. S. Ali, N. M. G. Al-Saidi, K. Rajagopal, F. E. Alsaadi,
and S. Jafari, “A novel mega-stable chaotic circuit,” Radioengineering,
vol. 29, pp. 140–146, 2020.

[6] M. Guzan, “Boundary surface of a ternary memory in the absence of
limit cycles,” In Proceedings of 22nd International Conference Radio-
elektronika 2012, April 17–18, Brno, Czech Republic, 2012.

[7] M. Guzan, P. Kovac, I. Kovacova, M. Beres, A. Gladyr, “Boundary
surface of Chua´s circuit in 3D state space,” In Proceedings of Interna-
tional Conference on Modern Electrical and Energy Systems, November
15–17, Kremenchuk, Ukraine, 2017.

[8] A. Silva-Juarez, E. Tlelo-Cuautle, Gerardo de la Fraga, L., and R. Li,
“Optimization of the Kaplan-Yorke dimension in fractional-order chaotic
oscillators by metaheuristics,” Applied Mathematics and Computation,
vol. 394, pp. 125831, 2021.

[9] S. Jafari, A. Ahmadi, A. J. M. Khalaf, H. Abdolmohammadi, V.-T.
Pham, and F. Alsaadi, “A new hidden chaotic attractor with extreme
multi-stability,” AEU-International Journal of Electronics and Commu-
nications, vol. 89, pp. 131–135, 2018.

[10] M. Itoh, “Synthesis of electronic circuits for simulating nonlinear
dynamics,” International Journal of Bifurcation and Chaos, vol. 11, pp.
605–653, 2001.

[11] J. Petrzela, T. Gotthans, and M. Guzan, “Current-mode network struc-
tures dedicated for simulation of dynamical systems with plane contin-
uum of equilibrium,” Journal of Circuits, Systems and Computers, vol.
27, pp. 1830004, 2018

Authorized licensed use limited to: Brno University of Technology. Downloaded on June 08,2022 at 07:32:44 UTC from IEEE Xplore.  Restrictions apply. 


