
Domain Collector
A CLI tool used to gather domains and related
information from various sources into a data set.

Authors: Adam Horák, Jan Polišenský, Radek Hranický
NES@FIT RESEARCH GROUP, FACULTY OF INFORMATION TECHNOLOGY, BRNO UNIVERSITY OF
TECHNOLOGY, 2023

Domain Collector enables automated collection, aggregation and storage of knowledge about
currently known trusted and dangerous domains on the Internet. It uses resources such as Cisco
Umbrella and MISP Threat Sharing feeds, particularly VirusTotal, PhishTank, and OpenPhish, to
obtain domain names. It then downloads and processes additional information about individual
domains based on:

1. active interaction – server response to ICMP echo messages, open known ports,

2. external sources such as DNS, WHOIS/RDAP, information from TLS certificates, etc.

The acquired knowledge is then stored in a MongoDB database where it can be used for other
purposes (rule creation for application firewalls or IDS/IPS systems, threat intelligence, machine
learning, and cyber threat detection research).

It works in two phases:

• Loading: Collects categorized domain names from various sources and stores it in a mongo

database.

• Resolving: Resolves select domain data and adds it to the database records.

The flow is shown in Figure 1. Both phases run independently. You can load directly from a file or
use a source list to load from multiple sources. Domains are stored for future resolving and the
data can be updated incrementally.

Figure 1: The architecture of Domain Collector

Requirements
• Python 3.9+

• MongoDB instance

• Installed pip modules from requirements.txt

To start, create a .env file in the root directory (or add to your environment directly) with the
following variables:

DR_MONGO_URI=<mongo connection string>
DR_NERD_TOKEN=<nerd api token if you have one>
DR_MISP_KEY=<misp api key if you have one>
Without the connection string, it will default to an unauthenticated local instance at mongodb://
localhost:27017/.

See config.py to change the database name and other defaults. This is also where you configure
service URLs, such as NERD and your MISP instance.

Note that to use GeoIP, you need to download the GeoLite2 databases from MaxMind and place
them in the data/geolite directory.

Usage
The interpreter invocation (ex. python3) will be omitted from the following examples. You
can use python or python3 depending on your system. Use python version 3.9 or later.

Note that commands that provide interactivity can be used with the -y or --yes flag to
skip the interactive prompts and start straight away.

You can also get help at any point with the --help flag. Use it with commands to get
information about the command and its arguments. Use it with the main script to get a list
of available commands.

Loading

Start by loading domains into the database with the load or load-misp command. When
loading domains, provide a label (such as benign or malign) to categorize the domains.
This label will be used as the collection name in the database.

Loaded domain’s records will have the label, source, timestamps, and a category, which
is either automatically inferred from the source or MISP feed configuration or set to
unknown. The category is meant to distinguish between different types of domains, such
as malware or phishing.

The load command loads from a file or a list of sources:

main.py load [options] <file> 
 
Options: 
 -l, --label TEXT Label for loaded domains 
 -d, --direct Load directly from the file

You must provide a path to a file that will be read. If it’s a source file (a list of domains to
be loaded), use the direct flag to load directly from the file. Otherwise, it will be read as a
list of sources to load from. Source lists are CSV files described in the Source Lists
section.

Use the label option to set the label for the loaded domains. If you don’t provide a label, it
will default to benign. The label is also the collection name in the database. Category will
be unknown if loading directly from a source file.

The load-misp command loads from a MISP instance:

main.py load-misp [options] <feed> 
 
Options: 
 -l, --label TEXT Label for loaded domains

Provide the name of the MISP feed to load from. The feeds are configured in config.py in
the MISP_FEEDS dictionary. The CLI will only allow feed names that are configured in the
dictionary. You can also use the help flag to get a list of available choices.

The feeds dictionary defines the available options (feed names) as keys and the values
are a tuple of the feed ID from MISP and the category the feed belongs to, such as
phishing.

Use the label option to set the label for the loaded domains. If you don’t provide a label, it
will default to misp. The label is also the collection name in the database.

Resolving

HEADS UP: Pinging requires root privileges, because it constructs raw sockets. If you don’t have root
privileges, you can proceed as normal and the pings will be skipped, but errors will be logged.

To resolve domains in the database, use the resolve command:

main.py resolve [options] 
 
Options: 
 -t, --type [basic|geo|rep|ports] Data to resolve 
 -l, --label TEXT Label for loaded domains 
 -e, --retry-evaluated Retry resolving fields that have
failed before  
 -n, --limit INTEGER Limit number of domains to resolve 
 -s, --sequential Resolve sequentially instead of in
parallel

Use the type option to specify the type of data to resolve. The default is basic. Resolving
is separated into different types to allow for more granular control over the resolving
process. The available types are:

• basic: Resolves most of the data available in the database. Domain data include DNS,
RDAP, TLS certificates. For found IPs, it’s RDAP and alive status (ping).

• geo: Resolves geolocation data for IPs.

• rep: Resolves reputation data for IPs (NERD only for now).

• ports: Performs port scan for IPs. This is slow and not recommended. Ports are
currently hardcoded.

Use the label option to specify the label of the domains to resolve. If you don’t provide a
label, it will default to benign. The label is also the collection name in the database.

Use the retry-evaluated flag to retry resolving fields that have failed before. Failed means
that the resolution for that field could not be completed for some reason deemed
unrecoverable. This is useful if you want to retry resolving those.

Use the limit option to limit the number of domains to resolve. This is mostly used for
debugging.

Use the sequential flag to resolve sequentially instead of in parallel worker threads. This is
useful if you want to resolve via an API that has rate limits or any other constraints that
could make parallel resolving problematic. Sequential resolving is much slower, however.

Stats

To get stats about the datasets, use the stats command:

main.py stats [options] 
 
Options: 
 -c, --collections Collections to show stats for 
 -w, --write Write stats to stats.json file 
 -g, --geo Write coords to csv files instead

Use the collections option to specify the collections to show stats for. If you don’t provide
a list of collections, it will default to misp and benign. Specify multiple collections by
repeating the option, such as -c misp -c benign.

Without the write flag, the stats will be printed to the console. Use the write flag to write
the stats to a JSON file named stats.json in the root directory. Note that this is different
from redirecting the output to a file. The JSON file will contain the stats in a JSON object,
while redirecting the output will write the stats in a human-readable format.

The geo flag is used to get coordinates of all IPs in the collections and write them to CSV
files. The CSV files will be named coords_{collection} after the collection they belong
to. You can use these files to visualize the data on a map.

Dry Resolve

To try out resolving a single domain and print the results, use the try command:

main.py try [options] <domain> 
 
Options: 
 -p, --with-ports Scan ports

Provide a domain name to try resolving. The with-ports flag will perform a port scan on
the domain as well. Remember that pinging requires root privileges (see above).

Domain Data Format
Each domain name is stored in a document in the database. These follow a common
loose schema, but not all fields are guaranteed to be present. You can see how the data
is structured in the datatypes.py file.

In addition to the data fields, the document stores remarks and timestamps for when
each field was resolved. This allows the program to skip resolving fields that have already
been resolved or that failed for fatal reasons, such as a TLS certificate simply not existing.
The logic to determine whether a field should be resolved or not goes like this:

• If the field is empty and the timestamp is empty, resolve the field. Either it has never
been resolved or it failed for a recoverable reason.

• If the field is empty and the timestamp is recorded, it means that the field failed to
resolve for some fatal reason. Resolve only if the retry-evaluated flag is set.

• In all other cases, the field has been resolved and the timestamp is recorded. Skip
resolving the field.

In general, for each type of data, there is a nested object with the data. For example, the
dns field contains the DNS data for the domain. The ips field contains a list of IP objects,
each with its own fields.

Each document also stores timestamps for when the domain was sourced and when it
was last resolved. The source field contains the source URI that the domain was sourced
from. The category field contains the category of malicious activity that the domain is
associated with.

Categories can be one of unknown, malware, phishing, spam, ads, cryptomining, dga.

Source Lists
Source lists are CSV files that contain a list of sources to load from. See the data/
Blacklists.csv file for an example. There are several columns in the CSV file that can
be used to specify the source URI and the category of malicious activity:

• source: The source URI. This is the only required column.

• category: The category of malicious activity that the domain is associated with. This is
optional and defaults to unknown. Irrelevant for benign domains for example. See above
for a list of available categories.

• category source: This determines the source of the category. If set to the value this,
the category will be taken from the category column. Other values (txt and csv) are used
to read the category from the source itself. This is useful if the source contains the
category in its data and it differs for each domain.

There are two more columns that are used when the category source is set to txt or csv.
These modes read the source as plain text or CSV respectively and use the category from
the source itself. These two columns are used to specify how to read the category from
the source. They are:

• getter: The getter specifies how to get the category from the source. - for plain text
sources, the getter is a regular expression that is matched against the current line in the
source. The first capture group in the regex is used as the category. - for CSV sources,
the getter specifies the delimiter and column number to get the category from. The
format is delimiter immediately followed by column. For example, ;2 will use semicolon
as the delimiter and find the column with index 2.

• mapper: The mapper is used to map the category from the source to the categories
used by the program. It’s a list of mappings in the format regex=category separated by
semicolons. The first mapping that matches the category from the source is used. If no
mapping matches, the category is set to unknown.

Example for getters and mappers

Picture a plain text source that contains a list of domains and their categories in the
format domain - category, for example:

example.com - Mallware 
example2.com - Fishing 
example3.com - Phish

Since there are multiple categories, we need to set the category source to txt and specify
the getter and mapper. The getter will need to match the value after the dash and the
mapper will need to map the category from the source to the categories used by the
program, since the source list uses different naming. Thus, our source list will have the
following for this source:

The getter captures everything after the dash and whitespace. The mapper maps
Mallware to malware and everything else to phishing. As you can see, this is fairly
flexible and can be used to source various lists for the categories used by the program.

Using source lists with the source loader

The source loader takes source files from the list and can read plain text files, CSV files
and JSON files. It can also unzip archives containing these files. The format of the source
file is determined by the file extension. If the file extension is not recognized, the loader
will try to read it as a plain text file.

To use a source list, simply provide the path to the source list file as the source URI. The
source loader will then read the source list and load domains from the sources in it.
Specifying indices for the above mentioned columns is not yet implemented, and the
columns are hardcoded for use with the default source list. This is priority for the next
update.

source category cat. source getter mapper

https://urls.org/domains.txt - txt -\s(.*) Mallware=malware;.*=phishing

Acknowledgements
This software is supported by Smart information technology for a resilient society project, no. FIT-
S-23-8209 granted by Brno University of Technology.

We also thank other researchers, namely Ondřej Ryšavý, Petr Matoušek, Ondrej Lichtner, Kamil
Jeřábek and Jan Pluskal who provided us with assistance, useful tips and feedback during the
creation of the software.

	Acknowledgements

