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Abstract: This paper presents a novel multiple-input and multiple-output current-mode universal
analog filter with electronic tuning capability. The proposed circuit uses a single second-generation
current-controlled current conveyor with extra-X terminals (EX-CCCII) and two grounded capacitors.
The filter can offer five standard filtering functions, namely low-pass, high-pass, band-pass, band-
stop, all-pass responses, in the same circuit without changing the internal configuration of the filter
by selecting appropriate input and output signals. To obtain the five standard filtering functions,
inverted input signal and input matching conditions are absent. The natural frequency of all filter
responses can be electronically controlled. The proposed circuit was simulated by SPICE using
0.18 µm CMOS process from Taiwan Semiconductor Manufacturing Company (TSMC). The results
of experiments using the integrated circuit operational amplifier AD844 confirm the functionality of
the new filter.

Keywords: extra-x second-generation current-controlled current conveyor (EX-CCCII); current-mode
circuit; active filter; analog circuit

1. Introduction

In many circuit designs, a second-generation current conveyor (CCII) is utilized to real-
ize analog signal processing circuits, especially current-mode signal processing circuits. The
circuits using CCII as an active element offer higher linearity, better signal bandwidth, and
wider dynamic range compared to the operational amplifier (op-amp) based circuits [1,2].
Moreover, CCII is simpler to implement compared to the op-amp structure. There are many
CCII structures available in literature [3–15]. In [3], a conventional CCII that has three
terminals (the y-, x-, z-terminals) is proposed. This CCII provides the characteristics of
Vy = Vx, Ix = Iz, a high resistance at the y- and z-terminals (ideally infinite), and a low resis-
tance at the x-terminal (ideally zero). In practice, however, the resistance at the x-terminal
is not equal to zero as it exhibits a parasitic resistance. In [4], a current-controlled CCII
(CCCII) is introduced. Due to the CCCII, the parasitic resistance at the x-terminal (Rx) can
be used as a parameter for filter application and this Rx can be electronically controlled.
Moreover, the CCCII-based circuit does not contain a passive resistor. Note that the CCCII
still has a single x-terminal, like the CCII.

Recently, the extra x-terminal CCII (EX-CCII) has been introduced [5]. This device is an
enhancement of the conventional CCII, which increases the number of x- and z-terminals.

Figure 1 shows the electrical symbol of the conventional CCII and the EX-CCII. Com-
pared with the conventional CCII in Figure 1a, the EX-CCII in Figure 1b has extra x-input
terminals and z-output terminals. The characteristics of the EX-CCII can be given by
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Vy = Vx1 = Vx2, Ix1 = Iz1, and Ix2 = Iz2. In addition, the number of x-input terminals and
z-output terminals of the EX-CCII can be increased to any number. Thus, the EX-CCII is
a versatile and flexible active device. There are many applications of the EX-CCII avail-
able in literature, including precision rectifiers [6–9], fractional-order controllers [10–12],
digital modulators [13], analog multipliers [14], wave signal generators [15], first-order
filters [16,17], and universal filters [18]. It is worth noting that the EX-CCII based circuit
does not provide electronic tuning capability.
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If the parasitic resistance at the x-terminal of the EX-CCII is considered, then the circuit
becomes EX-CCCII and its parasitic resistances at the x-terminals can be used as an ad-
justable parameter. This is advantageous for applications such active filters and oscillators.
The EX-CCCII can be used for applications such as oscillators [19–23], instrumentation am-
plifiers [24,25], immittance simulators [26], precision rectifiers [27], first-order filters [28–30],
and universal filters [31–34]. This work focuses on the EX-CCCII based universal filter.
Considering the universal filters in [31–34], these filters suffer from some drawbacks. First,
in order to obtain the five filtering functions (i.e., the low-pass filter (LPF), high-pass filter
(HPF), band-pass filter (BPF), band-stop filter (BSF), and all-pass filter (APF)), the filters
use inverted input signals and require input matching condition [31–34]. Second, the filters
use passive component matching conditions [34]. The use of a single EX-CCCII based filter,
made possible through the use of the current-mode technique, is advantageous in these
universal filters [31–34]. Note that the realization of signal addition and subtraction in
current-mode circuits is easier than for their voltage-mode counterparts.

This work proposes a single EX-CCCII-based current-mode universal filter. It is
a multiple-input and multiple-output filter providing five standard filtering functions,
namely low-pass, high-pass, band-pass, band-stop, and all-pass functions, that can be
obtained by selecting appropriate input and output terminals. The proposed filter offers
the following advantages: (i) it uses a single EX-CCCII; (ii) it does not require inverted
input signals or the fulfilment of input matching conditions to realize the five standard
filtering functions; (iii) it does not require matching of passive components; (iv) it offers
electronic tuning capability of a natural frequency.

The rest of this paper is organized as follows: Section 2 provides a description of
the proposed EX-CCCII and the proposed current-mode universal filter. Sections 3 and 4
present the simulation and experimental results, respectively. Section 5 concludes the paper.

2. Circuit Description

This section contains four subsections, where the first subsection introduces the second
generation current-controlled current conveyor with extra-x terminal that is used for
realizing the proposed filter. The second subsection introduces the proposed current-mode
universal filter, while the non-ideal gain analysis and non-ideal parasitic analysis are
presented in the third and fourth subsections, respectively.

2.1. Second-Generation Current-Controlled Current Conveyor with Extra-X Terminal

Figure 2a shows the electrical symbol of the EX-CCCII and Figure 2b shows the
equivalent circuit. The input voltage present at the y-terminal is conveyed to the x1- and x2-
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terminals. Rx1 and Rx2 are the parasitic resistances at the x1- and x2-terminals, respectively,
that can be controlled by the DC biasing current.
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The input current at the x1- and x2-terminals is conveyed to the z1- and z2-terminals,
respectively. The minus-type output of the z1- and z2-terminals can easily be obtained
using a cross-coupled current mirror topology. Thus, the port relationships of the ideal
EX-CCCII shown in Figure 2a can be given by

Iy
Vx1
Vx2
Iz1
Iz2

 =


0 0 0 0 0
1 Rx1 0 0 0
1 0 Rx2 0 0
0 ±1 0 0 0
0 0 ±1 0 0




Vy
Ix1
Ix2
Vz1
Vz2

 (1)

The CMOS structure of the EX-CCCII in Figure 2a is shown in Figure 3. The circuit
is based on complementary source followers, current mirrors, and cross coupled current
mirrors. The complementary source follower is a dual translinear loop (M1, M2, M4, M5)
and (M1, M3, M4, M6) where the gate-source voltages VGS of the NMOS transistors (M1,
M2 and M3) and PMOS transistors (M4, M5 and M6) are to match. In these loops, the input
voltage Vy is transferred to the outputs of the follower Vx1 and Vx2 precisely; if the drain
currents of M1, M4 equal to the drain currents of M2, M5 and M3, M6 and vice versa, the
drain current of M1, M4 is transferred precisely to M2, M5 and M3, M6 if the input and
output voltages and the gate-source voltages of the respective transistors and their size are
equal. The current mirrors (M9, M10, M14, M15, M21, M22, M26, M27) are used to transfer
the x terminals current to their respective z+ terminals. The cross coupled current mirrors
(M11–M13, M16–M18, M23–M25, M28–M30) are used to transfer the x+ terminals current to
their respective negative z- terminals. The biasing circuit realized by the transistors Mb,
M7, M8, M19, M20 and the biasing current source Iset provides all reference currents in
the circuit.
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Considering a dual translinear loop, the parasitic resistances Rx1 and Rx2 at the x1-
and x2-terminals, respectively, can be expressed [32] by

Rx1 = Rx2 =
1

√
2IsetCox

(√
µp

(
W
L

)
p
+

√
µn

(
W
L

)
n

) (2)

where Iset is the biasing current, Cox is the oxide capacitance per unit area, µp and µn are
the mobility of the holes and electrons, respectively, (W/L)p is the ratio of width to length
of the channels of M5–M6, and (W/L)n is the ratio of width to length of the channels of
M2–M3. From (2), the parasitic resistances Rx1 and Rx2 can be controlled by the biasing
current Iset. These resistors have the same resistance values.

The input current at the x1-terminal is conveyed to the z1+-terminal by the current
mirrors M7–M8, M19–M20, and the input current at x2 is conveyed to z2+ by the current
mirrors M12–M13, M24–M24. The minus-type outputs z1− and z2− can be implemented
using the cross-coupled current mirror topology. Additional copies of these z+,− outputs
can be obtained using the cascade structure for these terminals.

2.2. Current-Mode Universal Filter Using EX-CCCII

Figure 4a shows the proposed current-mode universal filter, and the block diagram
that corresponds to Figure 4a is shown in Figure 4b. It is based on one lossless integrator
and one lossy integrator loop. It employs one EX-CCCII and two grounded capacitors.
Thanks to the extra x-terminal and multiple-outputs of the EX-CCCII, the filter is realized
with only one active block. The circuit has four input currents (I1, I2, I3, I4) and three output
currents (Io1, Io2, Io3). Using (1) and nodal analysis, the outputs of the circuit in Figure 4a is
given by

Io1 =
D(s)I3 + I2 − (sC2Rx2 + 1)I1

D(s)
(3)

Io2 =
D(s)I4 − sC1Rx1 I2 + I1

D(s)
(4)

Io3 =
−sC1Rx1 I2 + I1

D(s)
(5)

where D(s) = s2C1C2Rx1Rx2 + sC1Rx1 + 1.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 23 
 

 

 
(a) 

 
(b) 

Figure 4. (a) Proposed current-mode universal filter using EX-CCCII, (b) its block diagram. 

From (3)–(5), the variant filtering functions of the low-pass filter (LPF), high-pass fil-
ter (HPF), band-pass filter (BPF), band-stop filter (BSF), and all-pass filter (APF) can be 
obtained, as shown in Table 1. For Table 1, it should be noted that the input terminal that 
is not selected to supply input signals can be floating, while the output terminal that is not 
selected to supply output signals should be grounded. 

Table 1. Variant filtering functions. 

Filtering Function Input Output 

LPF 
Non-inverting 𝐼ଶ 𝐼௢ଵ 
Non-inverting 𝐼ଵ 𝐼௢ଶ or 𝐼௢ଷ 

BPF Inverting 𝐼ଶ 𝐼௢ଶ or 𝐼௢ଷ 
HPF Non-inverting 𝐼ଵ = 𝐼ଷ 𝐼௢ଵ 

BSP 
Non-inverting 𝐼ଶ = 𝐼ସ 𝐼௢ଶ 
Non-inverting 𝐼ଵ = 𝐼ଷ 𝐼௢ଵ + 𝐼௢ଶ 

APF Non-inverting 𝐼ଶ = 𝐼ସ 𝐼௢ଶ + 𝐼௢ଷ 

The natural frequency (𝜔௢) and the quality factor (𝑄) of all filter responses are given 
by 𝜔௢ = 1ඥ𝐶ଵ𝐶ଶ𝑅௫ଵ𝑅௫ଶ (6) 

𝑄 = ඨ𝐶ଵ𝑅௫ଵ𝐶ଶ𝑅௫ଶ (7) 

From Table 1, it is evident that the circuit does not need an inverted input signal, i.e., −Iin, 
and double input signal, i.e., 2Iin, to realize all filtering functions. 

From (6), we can see that the natural frequency can be controlled electronically by 𝑅௫ଵ and 𝑅௫ଶ through the biasing current Iset. The quality factor, as shown in (7), is given 
by 𝐶ଵ 𝐶ଶ⁄  while maintaining 𝑅௫ଵ = 𝑅௫ଶ. 

2.3. Non-Ideal Gain Analysis 

Figure 4. (a) Proposed current-mode universal filter using EX-CCCII, (b) its block diagram.



Electronics 2024, 13, 2059 5 of 18

From (3)–(5), the variant filtering functions of the low-pass filter (LPF), high-pass
filter (HPF), band-pass filter (BPF), band-stop filter (BSF), and all-pass filter (APF) can be
obtained, as shown in Table 1. For Table 1, it should be noted that the input terminal that is
not selected to supply input signals can be floating, while the output terminal that is not
selected to supply output signals should be grounded.

Table 1. Variant filtering functions.

Filtering Function Input Output

LPF
Non-inverting I2 Io1

Non-inverting I1 Io2 or Io3

BPF Inverting I2 Io2 or Io3

HPF Non-inverting I1 = I3 Io1

BSP
Non-inverting I2 = I4 Io2

Non-inverting I1 = I3 Io1 + Io2

APF Non-inverting I2 = I4 Io2 + Io3

The natural frequency (ωo) and the quality factor (Q) of all filter responses are given by

ωo =
1√

C1C2Rx1Rx2
(6)

Q =

√
C1Rx1

C2Rx2
(7)

From Table 1, it is evident that the circuit does not need an inverted input signal, i.e., −Iin,
and double input signal, i.e., 2Iin, to realize all filtering functions.

From (6), we can see that the natural frequency can be controlled electronically by Rx1
and Rx2 through the biasing current Iset. The quality factor, as shown in (7), is given by
C1/C2 while maintaining Rx1 = Rx2.

2.3. Non-Ideal Gain Analysis

Taking the errors of the EX-CCCII into account, the relationship of the terminal voltages
and currents can be written by

Vxj = αjVy
Izj = β j Ixj

}
(8)

where αj is the voltage gain from y-terminal to xj-terminal, and β j± is the current gain from
xj±-terminals to zj±-terminals (j = 1, 2). Ideally, αj and β j± should be equal to 1. However,
in practice, these unity gains will be affected by the voltage and current tracking errors.
These can be expressed by β j± =

(
1 − ε jv±

)
and αj± =

(
1 − ε ji±

)
, where ε jv± is the voltage

tracking error and ε ji± is the current tracking error.
Taking into account the nonidealities of the EX-CCCII, the denominator of the non-

ideal current-mode universal filter’s transfer functions can expressed by

D(s) = s2C1C2Rx1Rx2 + s(C1Rx1 + C2Rx2(1 − β1−β1+))
+(β1−β1+β2+ + (1 − β1−β1+))

(9)

The parameters ωo and Q of the non-ideal filter are given by

ωo =

√
β1−β1+β2+ + (1 − β1−β1+)

C1C2Rx1Rx2
(10)
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Q =

√
(β1−β1+β2+ + (1 − β1−β1+))C1C2Rx1Rx2

C1Rx1 + C2Rx2(1 − β1−β1+)
(11)

The non-ideal gains of the EX-CCCII will slightly change the values of ωo and Q.

2.4. Non-Ideal Parasitic Analysis

The non-ideal model of the EX-CCCII is shown in Figure 4. The terminals x1 and x2
have low resistances Rx2 and Rx2, respectively. The parasitic inductances in series with
them are ignored. The terminals y, z1±, and z2± are shunted by parallel connections of
parasitic resistances and capacitances, Ry//Cy, Rz1±//Cz1±, Rz2±//Cz2±.

Considering the EX-CCCII parasitics, the denominator of the transfer functions can be
expressed by

D(s) = s2C′
1C′

2Rx1Rx2 + sC′
1Rx1

(
1 + C′

2Rx1Rx2Ga+C′
1Rx1Rx2Gb

C′
1Rx1

)
+(Rx1Rx2GaGb + Rx1Ga) + 1

(12)

where C′
1 = C1 + Cz1− + Cz2−, C′

2 = C2 + Cz1+, Ga = 1/(Rz1−//Rz2−), Gb = 1/Rz1+.
Letting

C′
2Rx1Rx2Ga+C′

1Rx1Rx2Gb
C′

1Rx1
= 0

Rx2GaGb + Rx1Ga = 0

 (13)

which is possible if Rz1−, Rz2−, Rz1+ are very high resistances compared with Rx1, Rx2, the
parameters ωo and Q of the non-ideal current-mode universal filter can be expressed by

ωo =
1√

C′
1C′

2Rx1Rx2

(14)

Q =

√
C′

1Rx1

C′
2Rx2

(15)

The parasitic capacitances will affect the parameters ωo and Q of the filter and their
impact can be minimized by choosing C1 ≫ Cz1− + Cz2−, C2 ≫ Cz1+.

3. Simulation Results

The proposed current-mode analog filter was designed and simulated in SPICE us-
ing TSMC 0.18 µm CMOS technology (Taiwan Semiconductor Manufacturing Company
(TSMC), Hsinchu, Taiwan). The aspect ratios of the transistors are shown in Table 2. The
supply voltage was ±0.5 V. The summarized performance of the designed EX-CCCII is
shown in Table 3 [32].

Table 2. Aspect ratios for the transistors in the EX-CCCII.

Transistor W/L (µm/µm)

M1, M2, M3 5/0.36

M4, M5, M6 10/0.36

Mb, M7–M18 3/0.36

M19–M30 6/0.36

Figure 5 shows the simulated parasitic resistance at the x-terminal (Rx) when the
biasing current Iset was varied from 2 to 50 µA. When the biasing current was increased
from 2 to 50 µA, the observed parasitic resistance Rx decreased from 20.32 to 2.29 kΩ.
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Table 3. Parameters of the designed EX-CCCII.

Parameters Value

Supply voltage ±0.5 V

Technology 0.18 µm

DC voltage range −100 mV to 100 mV

Voltage gain 0.953

Current gain
Iz+/Ix 1.01
Iz−/Ix 1.04

−3 dB bandwidth VF 0.502 GHz

−3 dB bandwidth CF
Iz+/Ix 141.9 MHz
Iz−/Ix 121.4 MHz

Rx (Iset = 2–60 µA) 20.3 kΩ–2.29 kΩ

Ry//Cy 100 kΩ//0.251 pF

Rz//Cz 462 kΩ//0.051 pF
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Figure 6 shows the simulated magnitude and phase frequency responses of the LPF,
HPF, BPF, and BSF with C1 = C2 = 20 pF and Iset = 20 µA. Figure 7 shows the simulated
magnitude and phase frequency responses of the APF. The filters offer a 3.23 MHz of the
natural frequency. Thus, it is evident from Figures 6 and 7 that the proposed current-mode
filter can realize the five standard filtering functions in the same circuit without inverted
input signal requirements.

The tuning capability of the proposed current-mode filter was tested by varying the bias
current Iset. The simulated magnitude frequency response is shown in Figure 8. The natural
frequency was (0.724, 1.51, 3.47) MHz when the bias current Iset was (2, 5, 40) µA, respectively.

The LPF was used to test the linearity of the proposed current-mode filter. The input
signal has an in-band frequency of 10 kHz and the amplitude was varied. Figure 9 shows
the simulated total harmonic distortion (THD) of the current-mode filter when the input
amplitude was varied. The THD was 1.038% when the amplitude was 70 µA (140 µAp–p).
Figure 10 shows the equivalent output current noise of the LPF. The integrated current
noise over the bandwidth of 3.23 MHz was calculated to be 17.13 nA, giving a dynamic
range of 69.2 dB.
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Figure 11 shows the simulated frequency responses of the LPF, HPF, BPF, BSP, and
APF when the temperature was set to −30, 27, and 85 ◦C. Figure 12 shows the simulated
frequency responses of the filter when the voltage supply was set to 0.975 V, 1 V, and 1.25 V
(1 V ± 5%). In both cases the curves overlapped or closed each other.
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Figure 13 shows the simulated magnitude frequency responses of the proposed filter
when the threshold voltage in CMOS process was varied by 10% (LOT tolerance), which
represents a process variation. As can be seen, the curves are closed to each other.
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The proposed current-mode filter was compared with previous works, as shown in
Table 4. The current-mode filters that use similar active devices, such as VD-EXCCCII [18],
EX-CCCII in [31,32], and DV-EXCCCII in [33,34], were used for comparison. Compared
with [31–34], the proposed current-mode filter can realize LPF, HPF, BPF, BSF, and APF
without inverted and double input signal conditions. Compared with [18], the proposed
current-mode filter uses an EX-CCCII of a lower complexity than the VD-EXCCII. However,
the VD-EXCCII based filter in [18] can offer mixed-mode operation (i.e., VM, CM, TAM,
TIM), but two resistors are required. Moreover, for the filter in [18], it is difficult to tune
the natural frequency because the equation of natural frequency includes both parameters
of the transconductance gm and resistance R. Thus, to tune the natural frequency without
changing the quality factor, the condition gm = 1/R should be met.

Table 4. Comparison of this work with selected analog filters.

Factor Proposed [18] [31] [32] [33] [34]

Number of
active devices 1-EX-CCCII 1-VD-EXCCII

(Figure 4)
1-EX-CCCII
(Figure 3) 1-EX-CCCII 1-DV-EXCCCII 1-DV-

EXCCCII

Realization
CMOS

structure and
commercial IC

CMOS
structure CMOS structure

CMOS
structure and

commercial IC

CMOS
structure and

commercial IC

CMOS
structure

Number of
passive

elements
2-C 2-C, 2-R 2-C 2-C 2-C 2-C, 1-R

Type of filter MIMO SIMO MISO MIMO MISO MISO

Operation
mode CM CM CM MM CM CM

Number of
offered

responses
7 5 5 5 (CM) 5 5

All grounded
capacitors Yes Yes Yes Yes (CM) Yes Yes
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Table 4. Cont.

Factor Proposed [18] [31] [32] [33] [34]

Without in-
verted/double

input
conditions

Yes Yes No No No No

High output
impedances Yes Yes Yes Yes Yes Yes

Electronic
control of ωo

Yes Yes Yes Yes Yes Yes

Voltage supply
(V) ±0.5 ±1.25 ±1.25 ±0.5 ±0.9 ±0.9

Natural
frequency

(MHz)
3.31 8.04 3.93 23 3.9 ~3.5–4.2

Power
dissipation

(mW)
0.465 5.76 3.18 1.35 205 2.2

Total harmonic
distortion (%) 1.038@140 µApp 2.5%@360 µApp

1.122%@100 µApp
(BP) 0.2%@200 µApp <6%@200 µApp

5%@120 µApp
(BP)

Verification Sim/Exp Sim/Exp Sim Sim/Exp Sim/Exp Sim

4. Experimental Results

The EX-CCCII implementation used in this section to implement the current-mode
universal filter is shown in Figure 14. The circuit is based on AD844 ICs and resistors.
The resistors in the circuit are set as R1 = R2 = R3 = R4 to obtain Ix1 = Iz1+ = −Iz1− and
R1c = R2c = R3c = R4c to obtain Ix2 = Iz2+ = −Iz2−. In this test, the resistors R1, R2, R3, R4,
R1c, R2c, R3c, and R4c were 1 kΩ. The resistors Rx1 and Rx2 work as parasitic resistors of the
EX-CCCII. The voltage-to-current (V/I) converter using AD844 and a resistor is used to
convert the input voltage from a function generator to current inputs Iin (i.e., I1, I2, I3, and
I4) (Iin = Vin/Rin), the example case for converting the voltage Vin to the input I1 (Iin) was
shown in Figure 14. To measure the output currents, i.e., Io1, Io2, Io3, the current-to-voltage
(I/V) converters are used (Vout = IoutRout), Figure 14 shows the example case for converting
the current Io3 (Iout) to the output Vout. In this test, the resistors Rin and Rout were 10 kΩ.
Thus, a unity voltage gain was obtained. Figure 15 shows a photo of the experimental
setup. The circuits were supplied from ±5 V and 22-nF capacitances C1 and C2 were used.
The measurement was performed using a Keysight DSOX1204G oscilloscope with a built-in
signal generator.

Figure 16a,b show the measured magnitude responses of the LPF, HPF, BPF, BSP,
and APF with setting resistances Rx1 = Rx2 = 5 kΩ. The measured natural frequency was
1.343 kHz while the filter was designed for a natural frequency of 1.446 kHz, giving an
error of 7.12%. This result confirms the workability of the proposed current-mode filter.

Figure 17 shows the measured magnitude responses of the BPF when the resistances
Rx1 and Rx2 (Rx1 = Rx2) are set to 15 kΩ (a), 10 kΩ (b), 5 kΩ (c), and 1 kΩ (d). From (6)
and (7), the natural frequency can be determined using Rx1 = Rx2 while the quality factor
(Q) can be selected using C1/C2. The capacitor values were fixed as C1 = C2 = 22 nF
and the resistors Rx1 = Rx2 are given, resulting in Q = 1. By setting the resistor’s values
from 15 kΩ, 10 kΩ, 5 kΩ, and 1 kΩ, the measured natural frequencies were found to be
0.469 kHz, 0.704 kHz, 1.343 kHz, and 6.668 kHz, respectively. The filter is designed for
natural frequencies of 0.482 kHz, 0.723 kHz, 1.446 kHz, and 7.234 kHz, respectively. Thus,
the errors were 2.69%, 2.62%, 7.12%, and 7.82%, respectively. This experimentation serves
to confirm the tuning capability of the current-mode filter expressed in (6).
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5. Conclusions

In this study, a new electronically tunable current-mode universal analog filter with
multiple inputs and multiple outputs is proposed. The filter employs only one EX-CCCII
and two grounded capacitors. The topology can realize five standard filtering functions of
low-pass, high-pass, band-pass, band-stop, and all-pass responses without changing the
internal configuration of the filter by selecting the appropriate input and output signals. The
inverted input signal and input matching conditions are absent for obtaining these filtering
functions. The natural frequency of all filter responses can be electronically controlled. The
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proposed filter was simulated by SPICE and confirmed through experimental testing using
IC AD844s.
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