Toward migration to SDN: Generating SDN
Forwarding Rules by Decision Tree

Sawsan Youssef
Brno University of Technology
Brno, Czech Republic
iyoussef @fit.vutbr.cz

Abstract—The deployment of Software Defined Network (SDN)
switches faces various challenges, one of them is to generate rules
to be preloaded in the flow table for performance improvement.
Since the flow tables in SDN are implemented by TCAM (ternary
content-addressable memory), they have a limited capacity. On
the other hand, prepopulating them with the most common
rules will reduce the flow setup delay. This paper provides a
method for the identification of the most suitable candidate rules
by observing the existing traffic and automatic generation of
OpenFlow rules that can fit in SDN tables. The rules are extracted
from the decision tree build based on the observed NetFlow
traffic. The experiments showed that this method can provide
a compact set of rules matching most of the network traffic (no
less than 98 %).

Index Terms—Decision tree, Software Defined Networks, Data
Mining, Netflow, Flow Table, Rule Generation.

I. INTRODUCTION

Software-Defined Networking (SDN) separates network
control from the data plane. While this allows for great
flexibility, it also involves a performance penalty when packets
cannot be processed on an SDN switch due to a missing match
rule. When migrating to SDN, we usually require preserving
existing network services. The approach may be to analyze the
existing configuration and transform it into an SDN program
or to monitor existing communication to derive appropriate
SDN rules automatically.

Due to the limited capacity of the rule table of SDN switches
(1500-3000 rules), it is not always possible to install all the
required rules. Unmatched flows are resolved by the SDN
controller, which introduces a flow setup delay. In this paper,
we present a method that uses data mining techniques to
identify the most appropriate rules for SDN switches based
on the observation of NetFlow records collected from the
network.

A. Contribution

We propose a method to compute a compact set of flow
rules that describes the observed traffic. The size of the rule
set is important to fit them into the SDN switch and to avoid
costly rule lookups in the SDN controller. We use a tree
representation of rules, which is convenient for identifying and

Ondrej Rysavy
Brno University of Technology
Brmo, Czech Republic
rysavy @vutbr.cz

removing redundant and overlapping rules. We build on the
work presented by Wakabayashi et al. [1], where the method
of compression of filtering rules in IP networks is presented.
CART and C4.5 decision trees represent rules with “allow” or
”disable” actions. The authors determine the accuracy of the
decision tree but do not provide any verification of correctness.
Also, only source-destination rule headers without QoS or
multiple paths that lead to incorrect forwarding flows are
considered. To increase the utilization of the SDN switch
and create fewer SDN forwarding rules, we classified the
NetFlow traffic according to its exit port (to represent the next
hop of routing). More rule headers, such as input port and
protocol type are included to reduce the number of incorrect
forwarding flows and to consider QoS routing. This method
can be applied periodically in dynamic networks. We verify
the proposed method’s robustness with several experiments:
testing and emulating the SDN framework (mininet) along
with different types of datasets.

B. Paper Organization

The organization of this paper as follows: Related work is
discussed in section II, followed by the preliminaries and de-
scription of the proposed method in section III. We presented
the evaluation on several data sets in section IV. The results
are discussed in section V followed by a summary in section
VI

II. RELATED WORK

Our work is motivated by the issue of replacing IP routers
with SDN devices, which requires transforming the router
configuration to SDN programs. For efficiency, compaction
of the rule is required to fit in the SDN switch. This section
provides an overview of the closest related work in this area.

Due to the resource limitation in SDN networks, the opti-
mization of the number of efficient rules that could be stored
in SDN switches should be satisfied. Although the optimizing
of the two-dimension routing rules is NP-hard [2], several
types of research were applied in the TCAM compression
and minimization of SDN forwarding rules. An example is
Officer [3], where the SDN network is treated as a black box

that should satisfy required end-to-end policy and the optimal
resource allocation which relies on distributing the rules for
default and alternative paths.

Another line of research suggests using wildcard rules to
minimize the rule space. In DomainFlow [4], the network flow
is controlled by two sets of rules: one with wildcard and one
with exact match rules, which can cause forwarding problems
and potential security risks. Minnie [5] reactively compresses
the SDN rules by using three aggregation methods (according
to the source, destination, and hybrid), then choosing the
minimal results of the three algorithms. The drawback is the
high complexity and processing and the possibility of improper
forwarding of new traffic. The compression technique in [6]
relies on the IP mask reduction technique and excludes the
rules covered by a parent rule. Also, such an approach was
applied in the proposed aggregation of SDN rules in [7]. The
approach followed in [8] to solve the rule placement problem
is to pre-define the paths that packets must follow inside the
network (e.g., shortest path) and then to determine the set
of rules and their placement (supposing that the paths are
respected). A dependency graph was applied in Pallete [9]
to cut the rule table into several tables before distributing
them to the OpenFlow switches. Another method, ReWiflow
[10] reduced the OpenFlow rules by changing the header
fields’ order in the flow entries. The header field appears
in the flow entries just if the previous header is stored. The
existing methods often use only a few rule features (source,
destination, input, and output) which may be the limitation
when considering, e.g., the multi-path routing or QoS policy.

In our previous work [11], the partial node replacement
of the traditional network into SDN based on the NetFlow
traffic was discussed. We proposed an algorithm for NetFlow
traffic analysis and OpenFlow rules generation (exact match
rules). The present work improves the approach by reducing
the number of resulted rules.

III. PROPOSED METHOD

The method accepts Netflow records of modeled network
traffic (Section III-B) and computes a set of compressed SDN
rules as a result of several computational steps consisting of
creating a decision tree from NetFlow rules (section III-C),
generating rule candidates (section III-D) and their further
ordering and prioritization (section III-E). Finally, the rules
are validated, and redundancy is removed (section III-F).

A. Preliminaries

The routing and firewall policies are implemented in the
SDN network as a set of flow rules that control switches.
Rules are installed into the OpenFlow tables with respect to
their priority. Every rule r is a tuple r = (Pri, Pat, Pts)
where: Pri is the rule priority, Pat is the matching pattern,
and Pts is a set of output ports. The packet can be for-
warded to one of the output ports (unicast), a group of ports
(broadcast/multicast), the controller (output port ctrl), or null
port (packet is dropped). The action of matching rule with
the highest priority is chosen to process the packet. However,

TABLE I
FORMAL MODEL SYMBOLS
Symbol | Description
Rec Number the data set records
T Tree rules (tree leafs)

Sr SDN rules of switch S

Acc Decision tree accuracy
FF False forwarded flows according to the constructed rules
Ports | Number of the output ports of the router

Cy Coefficient variation of feature f

Fly Set of flow features
BS, Generated SDN rules by applying bitmask ports
Tqeptnh | Max depth tree

when there are two rules with the same priority that match the
same packet, the OpenFlow switch can arbitrarily choose one
of them [12]. The symbols used in the following description
are listed in Table L.

B. Traffic Processing

At this step, the NetFlow traffic collected at the switch is
exported to CSV data sets. Then data is processed and flow
features F'ly (sa: source IP, da: destination IP, in: input port,
sp: source port, dp: destination port, pr: protocol, out: output
port) are extracted by Python scripts from NetFlow data for
each record. Note that for the decision tree all feature values
are converted to integer values. IP addresses are considered as
32-bit size integers. The protocol names are mapped back to
their numbers!, e.g., “TCP” is presented as 6 and "UDP” as
17.

C. Decision Tree Modeling

Tree based algorithms are used to explore the patterns in
large datasets, in this case, we employ them to model the char-
acteristic of observed network traffic. To prevent the decision
tree from over-fitting, several methods to perform pruning in
the decision tree are applied. We use the post-pruning which is
parameterized by the cost complexity parameter (cx) to control
the size of the decision tree and to select the optimal tree size.

As o« increases, more subtrees are pruned. The goal is to
find a value such that we get the best matching accuracy for
rules that fit the OpenFlow table. We implemented a Python
script to calculate the range of suitable a values. The script
determines the depth of the tree and achievable accuracy (to
be evaluated according to the resulted SDN rule).

D. Generating SDN rules

This step takes the root of a decision tree computed in the
first step and generates tree rules (1;.) by enumerating all
downward paths to leaves. Every path consists of a set of
conditional expressions and the decision assigned to the leaf
node. The rules are exported to a CSV file from which the
SDN rules (S,) are listed using the Algorithm 1 as follows:

o For every resulted tree rule r;, the FeatureSet(r;)

that represents the feature constraints that are contained

Uhttps://www.iana.org/assignments/protocol-numbers/protocol-
numbers.xhtml

Algorithm 1 Rule Generation

Input: T;. - set of the tree rules
Qutput: S, - set of the SDN rules

1: for all T'., € T, do
2. for all F; € FeatureSet(T,,) do
3 if Fj=sa or Fj= da or F;= sp or F;= dp then
4: Compute the range r; of F}
5 (value, mask) =
Range_GetValueAndMask(r;)
Sy, [F;] := WildcardM atch(value, mask)
else
value := GetValue(F})
Sy, [Fj] := ExzactM atch(value)
10: end if
11: end for
2: Set_Add(S,, S;,)
13: end for

R

—

in the tree rule are extracted. Then the constraints are
evaluated to obtain resulting range using interval opera-
tions (Line 3). For example, source address constraints
sa < 484848, sa < 4545, sa > 323 yields to
range sa € [324,4545]. When the lower or upper
bound is undefined, we use the smallest IP address or
largest address that occurs among the training data. In
[1], they use different default bounds for IP addresses,
namely ”255.255.255.255” for the upper and 70.0.0.0”
for the lower, which can cause more wild card rules.

e After determine the ranges, the rules will be produced
by encoding the ranges using bit masks. The set of IP
addresses in a range is set by using Python package
netaddr, which computes a set of network addresses
and their masks. As any match fields of OpenFlow rule
may be wild-carded using a bit mask we can directly
use the computed network address and mask in the rule
for both source and destination address fields match.
Moreover, we compute bit masks also for other features,
e.g., port and protocol ranges?.

E. Sorting and Prioritization

Each rule should be prioritized in the generated SDN rule
set to avoid conflict when multiple rules may match traffic.
Note that the tree path conditions for fields are disjoint; thus,
the priority of the rules is related to the fields that are not
included in the match. For example, in the decision tree from
Fig.1, each node represents a condition phrase related to a
particular feature. Since a rule may not cover all fields when
matching, it is preferable to prioritize more specific rules over
general ones.

For two rules from Table II, the ranges of every feature of
rules are as depicted in Table III. The range representation was

Uhttps://pypi.org/project/netaddr/
2In actual implementation the protocol is not represented using ranges.

TABLE 11
EXAMPLE OF THE TREE RULES WITH CLASS 0 AND 4 OF FIG.1
Tree_Rule Path conditions out
T, da < 587202688, sa < 251658496 0
Ty, da > 587202688 4
TABLE III

RESULTED FEATURES RANGE OF THE RULES IN TABLE (II)

Tree Rule | Features Ranges
Try sa [167772417, 251658496]
da [335544578, 587202688]
Ty, da [587202689, 671088643]

discussed in Section III-B (where the lower IP address of da
is the smallest IP address of the destination IP address among
the training dataset).

One of the SDN generated rule S,., based on T;., is:
priority = 600,dl_type = 0x800,nw_src =
10.0.1.0/24, nw_dst = 20.0.1.2/31, actions = drop
Where dl_type = 02800 refers to the data link type to use
Ipv4 in the rule. The priority was calculated by the following
equation:

priority = default — 100 * number of empty fields

For example the priority of S,, is: 1000 — 100 =*
4 = 600. For the T,,, the SDN resulted rule S, is:
priority = 500,dl_type = 0x800,nw_dst =
40.0.0.0/30, output = 4.

F. Validation and Redundancy removing

Redundant rules may appear due to rules that cover all
assumed continuous ranges in the decision tree and do not
match any traffic from the training streams. We exported the
rules that match the original traffic and removed the redundant
rules. The correctness of the generated rules is checked by
comparing the output field of the record before and after
matching with the generated rules.

da = 587202688.0
gini = 0.271
samples = 1290
value = [1095, 35, 88, 72]

sa = 251658496.0
gini = 0.166
samples = 1202
value = [1095, 35, 0, 72]
class = 0

dp = 388.5

gini = 0.0 gini = 0.44

samples = 109
value = [10¢
class =0

samples = 107
value = [0, 35, 0, 72]
class = 5

gini = 0.0
samples = 35

value = [0, 35, 0, 0]
class =1

Fig. 1. Decision tree example

according to the shortest path. Each node is represented
by OVS-switch that is connected to a host and generates

traffic flows in the network. Prepared Pcap files were

collected in real network from several sources (real-time

captured in public Pcap library: Netresec ®. The Pcap

files traffic are variant: File transfer, video stream, DNS,

web surfing and even intrusion traffic. TcpReplay was

used to resend the Pcap files into the network. Second,

TABLE IV
COMPARISON OF SEVERAL ATTRIBUTES OF THE USED DATASETS.
Data Rec Csa Cda Csp Cap Ports
D2 1048576 | 27.43 | 27.49 77.73 81.19 5
D250,0.001 83196 43.75 | 45.19 102.60 102.65 2
Ds00,50 5454 30.99 | 29.41 66.67 80.17 4
D1000,0.001 5485 40.66 | 41.40 91.13 84.42 3
D1000,10 5485 40.67 | 41.40 91.13 84.42 3
D1000,10 2647 47.16 | 43.44 | 100.241 93.56 3
D¢ 50 2647 3472 | 31.44 67.54 77.31 3

the observed traffic at SDN switch is exported to an

IV. EXPERIMENTS

For demonstration and evaluation of the method we run two
types of experiments:

1) Validation by testing: Several Python scripts for match-
ing the original flows against the generated rule are used.
We run the experiments on public existing dataset >:
The traffic was generated by using DOcker-based
fRamework fOr gaTHering nEtflow (DOROTE) traffic.
Only the dataset with input packet sampling (the method
to place less load on the network devices by collect
subset of the packets instead of every packet) was used
in our validation. The datasets contain also attack flows
which nevertheless has not negative effect the method.
However, in this work we assume that all traffic is
regular and thus we learn rules from both normal and
attack flows. Generating rules that can deny attack flows
for labeled input is left for future work.

We have tested the method with datasets of various
sampling rates and attacks included. The datasets are
referred by names D, ,, where: x refers to the sampling
rate and y refers to the attack percentage in the dataset.
Also we have evaluated the method using another public
dataset (denoted as D2 #) that contains million NetFlow
records.

Table IV overviews attributes that characterizes the
datasets. Column Rec denotes the total number of
NetFlow records. The coefficient of variation CV of
features is used to compare the variation between two
different data sets.

In the experiments, the SDN rules are generated initially
without pruning. If the number of rules exceeds the
switch capacity (3000) the port bitmask rules will be
generated. If this does not help the pruning is applied
and adjusted by a parameter.

2) Evaluation in Mininet: We evaluated the proposed
framework in SDN network by Mininet emulation tool.
First, we converted the traditional network BSO Net-
work 2011 topology obtained from Topology Zoo ° to
SDN network.

The network consists of 14 nodes and 18 links. The de-
fault forwarding rules are installed in the SDN switches

3https://open.scayle.es/dataset/netflow-data-with-ng-for-test
“https://zenodo.org/record/4106738# YKPWM6gzY 2x
Shttp://www.topology-zoo.org/dataset.html

external NetFlow server. Such dataset is processed by the
proposed method to generate the new rules. For valida-
tion, the generated forwarding rules are reinstalled at the
SDN switch (after deleting its original configurations).
Finally, original traffic is replayed again in the network
and matched against the new configurations.

In our simulation testbed in SDN, two datasets were
tested: Dataset D 4 which contains 1758 distinct flows
of NETREC (gathered in mininet during 3 days). An-
other dataset Dp was gathered during half an hour (404
distinct rules: The same transport protocols of NETREC
dataset, same IP addresses range, 20 sessions for every
pair of hosts).

V. RESULTS

The comparison of the results of the public data sets is
shown in Tables (VII,VI). Validation test in mininet emulation
is depicted in table (V). We discovered that the proposed
algorithms even when o« = 0 minimizes the generated rules
with small number of false forwarding rules (Table VII). The
coefficient variations of the features (Table IV) affects the
number of features that are included in the tree nodes. The
small number of the coefficient variations of the sources and
the destinations of numerous traffic Do improves the rules
reduction. The algorithm is calculated for best predicted o
=0.004 and 0.001 in table VI, and still the final rules are
fitted in SDN switch (less than 3000 rules).

The resulted forwarding rules are matched against the
training data to measure the the flows that are incorrectly
forwarded.It is shown in the results that F'F' is minimized
when the pruning is low. The final generated rules can be
calculated as a union of the resulted rules set based on the
mining method and the false-forwarding rules set (which
will be exact match rules assigned with higher priority) and
expressed as:

Ef.UFF

Where E f, is the resulted rules (without redundant).

To present the efficiency of generating bitmask rules, the
comparison of the generated rules of the dataset (Dp) is
shown in (Fig. 2) and the violated flows in Fig. 3. The OVS
bitwise rules efficiently reducing the number of rules with
negligible difference number of incorrect flows when it is not
used. For the dataset (D250,50: sampling 250/attack 50%), the

Shttps://www.netresec.com/

TABLE V
RESULTS OF ALGORITHM IN MININET ENVIRONMENT.
DataSet «a Ef. | FF
Dy 0 59 21
0.01 11 193
Dp 0 57 5
0.01 39 13

140

120

100
80

SDN rules

60
40
20

] 0.01 0.02 0.11

Pruning factor

Bitwise rules Rules with exact ports values

Fig. 2. Rules comparison in D g dataset (with and without Bitwise ports)

number of generated rules without bitmask is 4358 which is
minimized into only 26 rules (with bitmask), without changing
of the violated flows (5 violated flows).

A. Comparison with previous work

Most of the previous work related to the SDN rules
compression didn’t evaluate excessive forwarding rules. For
example, the number of the dataset rules evaluated in [1] is
1555 rules, and is minimized into 124 rules with an accuracy
92%). In Minnie [5] the SDN switch rules limits was 750
rules that are re-actively grouped with negligible loss rate.
1636 rules of Stanford dataset are compressed by Reviflow
[10] (reactively) by covering 85% of the original flows.

In this work, several types of datasets were tested (ranging
from several hundreds of records to millions of records (as in
D, dataset which is minimized into 143 effective rules and
270 incorrect forwarding rules (less than 0.02 %)). The rules
that express the resulted violated flows are integrated with the
wildcard rules To improve the accuracy.

VI. SUMMARY

This paper described and evaluated a new SDN forwarding
rule generation method based on the decision tree classification

0 001 002 011
alpha

Violated flows with bitwise rules Violated flows with exact port rules

Fig. 3. Violated flows with/without Bitwise in Dpg

TABLE VI
RESULTS OF ALGORITHM ON D2 DATABASE.
o T | BS, | EF, | FF
0.001 9 6672 143 270
0.004 | 4 2174 139 1890

TABLE VII
RESULTS WITHOUT PRUNING (o =0).

dataset T, Ace | S, | FF | Ef,
D250,0.001 3 17099 [3 1 3
Ds00,50 7 10991 | 47 9 37
Ds00,10 5 10991 | 70 3 65
D1000,0.001 4 1099 | 70 3 7
D1000,10 6 0.998 43 3 3
D1000,50 5 [0989 | 38 | 20 7

of monitored NetFlow traffic. The experimental results showed
that it is possible to generate rules that fit into the SDN flow
table and still provide high accuracy. Validation of rules in
the SDN environment was tested on a real dataset in Mininet.
Further, future work is to evaluate the proposed method in
different topological models with multipath routing.

ACKNOWLEDGMENT

This research was supported by project Smart Information
Technology for Resilient Society financed by the Internal Grant
Agency of Brno University of Technology.

REFERENCES

[1] K. Wakabayashi, D. Kotani and Y. Okabe, “Traffic-aware Access Con-
trol List Reconstruction,” 2020 International Conference on Informa-
tion Networking (ICOIN), Barcelona, Spain, 2020, pp. 616-621, doi:
10.1109/ICOIN48656.2020.9016512.

[2] F.Giroire, F.Havet and J.Moulierac. Compressing two-dimensional rout-
ing tables with order. INOC (International Network Optimization Con-
ference), May 2015, Varsovie, Poland. pp.351-358.

[3] X. Nguyen, D. Saucez, C. Barakat and T. Turletti, "OFFICER: A general
optimization framework for OpenFlow rule allocation and endpoint
policy enforcement,” 2015 IEEE Conference on Computer Communi-
cations (INFOCOM), Kowloon, 2015, pp. 478-486, doi: 10.1109/INFO-
COM.2015.7218414.

[4] Y. Nakagawa, K.Hyoudou, C.Lee, S. Kobayashi, O. Shiraki, T.Shimizu,
” Domainflow: Practical flow management method using multiple flow
tables in commodity switches.” In Proceedings of the Ninth ACM
Conference on Emerging Networking Experiments and Technologies
Santa Barbara, CA, USA, 9-12 , December 2013.

[5] M. Rifai et al., ”Too Many SDN Rules? Compress Them with MINNIE,”
IEEE Global Communications Conference (GLOBECOM), San Diego,
CA, 2015, pp. 1-7, doi: 10.1109/GLOCOM.2015.7417661.

[6] H. Liu, "Routing table compaction in ternary CAM,” in IEEE Micro,
vol. 22, no. 1, pp. 58-64, Jan.-Feb. 2002, doi: 10.1109/40.988690.

[71 Yu, Curtis and Lumezanu, Cristian and Madhyastha, Harsha V. and
Jiang, Guofei”, “Characterizing Rule Compression Mechanisms in
Software- De
ned Networks”,’Passive and Active Measurement conference, Springer
International Publishing, 2016, 302-315

[8] X. Nguyen, D. Saucez, C. Barakat and T. Turletti, "Rules Placement
Problem in OpenFlow Networks: A Survey,” in IEEE Communications
Surveys and Tutorials, vol. 18, no. 2, pp. 1273-1286, Second quarter
2016.

[9]1 Y.Kanizo,D.Hay and I. Keslassy: Palette: Distributing tables in software-
defined networks. IEEE Infocom Mini-conference, Apr 2013.

[10] S.Sajad and G.Yashar: ReWiFlow: Restricted Wildcard OpenFlow Rules.
In ACM SIGCOMM Computer Communication Review. Volume 45,
Number 5, October 2015.

[11]7 S. Youssef and O.Rysavy ,” Proposed Method for Partial Node Re-
placement by Software Defined Network”, Federated Conference on
Computer Science and Information Systems, ACSIS, Vol. 22, pages
11-14 (2020)

[12] ONF, OpenFlow Switch Specification Version 1.5.1(Protocol version
0x06), March 26, 2015.

