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Abstract—This paper presents the framework for easily de-
ployable, universal network applications focusing on robotic
tasks. The framework defines the unifying interface between
the robot and the application. It could be deployed in three
locations: on the cloud, edge device, or on the robot itself. This
paper describes the interface in detail, followed by the reference
implementation of such a network application for an object
detection task. The reference implementation is evaluated under
different conditions, locations, and connection methods. Results
indicate that offloading computationally demanding tasks to the
edge or cloud is feasible and significantly reduces power demands
on the robot as CPU and RAM are less utilized. Moreover, a GPU,
needed for acceleration of detection algorithms, might be omitted
from the robot’s configuration.

I. INTRODUCTION

To allow autonomous operation, robots must be able to
sense their environment and learn, which requires significant
computing power, leading to higher energy demands and,
therefore, lower battery life. To perform tasks autonomously
in a semi-structured or unstructured environment, a robot may
need, for instance, an object detection module, which depends
on a continuous stream of sensor data, specifically camera
images. Typically, this has to be run locally on the robot
because of insufficient bandwidth, latency, and reliability of
networking technologies such as Wi-Fi.

With the increasing availability of reliable and low-latency
5G networks, it is achievable to offload the most demanding
computational tasks to another machine over the network,
which could be edge or cloud, depending on actual require-
ments and limitations. Moreover, having a shared cognition
module in a cloud might enable collective intelligence, where
data from multiple robots are aggregated. Another reason for
offloading algorithms might be that specialized hardware, such
as an AI accelerator or GPU, might be required for optimal
performance, which is unavailable on the robot.

This work presents an approach for cloud-native network
applications and is part of broader efforts within the 5G-
ERA Project [1–3]. The project aims to provide a complete
infrastructure for the design, development, deployment, and
provisioning of network applications to improve the autonomy
of robots and the quality of experience for customers of vertical
sectors such as PPDR1, transport, healthcare, and Industry 4.0.
Within this paper, we deal with a subset of the project’s scope –
namely, we propose guidelines for the architecture of network
applications and define a common interface for stateless and
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stateful applications. A reference network application, interface
definition, and a universal client for Python (currently the
most widely used scripting language) are publicly provided.
To evaluate the performance of the reference application, an
experiment was carried out, comparing multiple options for
image transport and deployment directly on the robot, on edge,
and in a cloud.

II. RELATED WORK

For mobile robots, the first generation of ROS [4] used to
be the de-facto standard. Its custom communication protocol
based on XML-RPC offers TCP and, to a limited extent, UDP
transports; however, not supported in Python implementation
and without multicast. One of the disadvantages is that it needs
a central node, which facilitates connections between other
nodes. ROS was intended to be used over a local, reliable
network. There were various attempts to involve ROS-based
robots in cloud architecture, either using a custom protocol [5]
or based on VPN [6]. It is also possible to containerize ROS
nodes [7], which is one of the steps toward cloud-native appli-
cations. The second generation, ROS2 [8], is based on DDS,
supports QoS and multicast, and uses a discovery mechanism
to facilitate connections between nodes, which removes the
need for the central node. However, ROS2 on its own is not
production-ready for the flexible deployment of cloud-native
applications. For instance, FogROS2 [9] is an extension of
ROS2, utilizing Kubernetes to deploy computational modules
and h264 stream for image transport. Robot and cloud nodes
are connected through VPN. It was shown it could reduce
SLAM latency by 50 %. However, not all robots use ROS, or,
in some cases, DDS multicast-based communication might be
infeasible due to the security settings of a cloud provider, so
it also makes sense to create ROS-agnostic frameworks. An
example could be Kube5G [10], which uses snap packages or
Docker containers and can deploy them on a bare metal or
cloud. The issue that must also be considered when offloading
computational tasks to the cloud is necessary bandwidth,
latency, and reliability. With 5G networks, achieving a reliable
deterministic performance is possible, which is unattainable
with Wi-Fi (IEEE 802.11ac or even the latest ax variant) [11].

III. PROPOSED NETWORK APPLICATION INTERFACE

We propose using network applications with a specific
design to offload data processing from the robot to the external
computational node. The edge device, i.e., geographically close
hardware, could represent the computational node, offering



Fig. 1. The life-cycle of the network application. It describes the control endpoints required for establishing communication between the robot and the network
application and the /send image endpoint used for sending the images to the network application.

a low-latency connection with potentially high throughput.
Applications where latency is not crucial could also use cloud
computing for the offloading, especially if an edge device is
unavailable. The cloud-based solution provides higher scala-
bility and a more efficient resource allocation as they can be
shared between multiple robots.

The network application can handle stateless and state-
ful services, although both have limitations and advantages.
Implementing the stateless services as a network application
with high scalability and great performance is relatively easy
because no data model must be updated over time and shared
between all computing nodes. Scalability is more challenging
for stateful services because the time and model synchroniza-
tion between all computing nodes must be considered.

For deploying the network application in a real-world sce-
nario, orchestration is a crucial component. In the scope of the
5G-ERA project, a complex middleware is being developed2,
which provides the PaaS (platform as a service) solution for the
network application. Therefore, the network application does
not have to take care of the orchestration procedure because
the 5G-ERA Middleware will deploy the application to suitable
HW based on the robot’s requirements and enables the robot
to communicate with the application directly. The proposed
interface supports containerization, and the resulting network
application could therefore be orchestrated by the 5G-ERA
Middleware in the Kubernetes cluster.

2https://github.com/5G-ERA/middleware

A. Architecture and life-cycle

The proposed architecture defines a protocol for connecting
the robot (or any other type of client) and the network appli-
cation. The reference implementation utilizes a combination
of HTTP and WebSocket communication to send data to the
network application and obtain results from it. However, the
protocol is general and enables the utilization of various data
transmission channels, such as GStreamer, for video stream
transmission or a message broker, such as Apache Kafka or
RabbitMQ.

The network application’s life-cycle is presented on fig. 1.
To establish the connection between the robot and the ap-
plication, the robot uses the HTTP endpoint /register,
which ensures that the corresponding record of the robot
is created on the network application side. After the record
and corresponding session is made, the client can optionally
initiate the bi-directional WebSocket (SocketIO) connection
to the network application to pass data and obtain results
asynchronously, without polling. This pattern enables to create
two types of connections:

• Unidirectional HTTP connection.

• Bidirectional HTTP+SocketIO connection.

The former uses the HTTP requests only for passing data
and obtaining results, resulting in a more straightforward
integration of virtually any robot capable of creating HTTP
requests. It could connect simple robots, IoT or mobile devices,
or others. Since the connection is unidirectional (where the
robot is the client and the network application is the server),
the data from the network application could be passed to the



Fig. 2. The network topology used for the evaluation with all three connection types - Ethernet (solid red line), Wi-Fi (blue dashed line), and 5G (green dotted
line). Only one of the connection types was enabled for each experimental run. The figure contains images published by gstudioimagen, pch.vector and upklyak
on Freepik.

robot only when the robot explicitly asks for them, e.g., using
the polling mechanism. The latter combines the simplicity of
HTTP requests with the versatility of WebSockets through the
SocketIO library. Since the WebSockets are bidirectional, both
parties could initiate data transmission anytime.

This approach enables multi-domain communication be-
tween the robot and the network application. The communica-
tion can be initialized from behind the NAT or firewall and can
benefit from standard HTTP authentication and authorization.

B. Interface and client library

The client library for connecting the robot and the network
application is publicly available as era-5g-client3 pack-
age. It is written in Python 3 and simplifies the communication
protocol integration into the robot code. The client library is
compatible with ROS Noetic, Foxy, Galactic, and Humble. It
consists of two main classes, one of which contains methods
for communication with the network application. The other
one serves as an interface between the robot and the 5G-ERA
Middleware. It allows deployment of the requested network
application and controls its life cycle.

The era-5g-interface4 contains several classes
which simplify the implementation of the network applications.

IV. REFERENCE IMPLEMENTATION

For the reference implementation of the network applica-
tion5, we have selected the object detection problem, as it
is a vital problem for almost every kind of robot to be able
to handle complex tasks. Mobile robots need to detect other

3https://github.com/5G-ERA/era-5g-client
4https://github.com/5G-ERA/era-5g-interface
5https://github.com/5G-ERA/Reference-NetApp/

robots, obstacles, or pedestrians. An industrial robot needs the
detection of workpieces, tools, or human workers. Assistive
robots need object detection to, e.g., pick the correct food from
the fridge or search for items in the house.

We have selected the YOLO [12] object detection method
provided by the MMDetection package [13] due to its easy
integration and high performance. The detector is stateless and
therefore requires no temporal knowledge of the processed
video stream. We use the DarkNet-53 [12] version of the
detection model for reference implementation.

Nevertheless, the MMDetection package also offers various
other pre-trained detector models, including neural networks
performing instance segmentation. As a result, the implemen-
tation of the reference network application is not limited to
using only the YOLO detector. Any other object detection
model provided in the MMDetection package can be readily
selected instead of the YOLO model simply by changing the
initialization parameters of the network application. Because
of this, the reference application can be used with minimal
changes in various use cases. Even when the use case differs
significantly, it acts as a template and reduces necessary
development effort significantly.

V. EVALUATION

We have evaluated the reference network application con-
cerning the power requirements, observed latency and CPU,
GPU, RAM, and video RAM usage under various conditions.
All the metrics were measured using three different execution
platforms:

• Robot - Intel Core i5-6500 CPU, 4 cores @ 3.20GHz
with 32 GB RAM and Nvidia GeForce GTX 1050
Ti with 4 GB RAM, running Ubuntu 22.04 operating
system



Power CPU RAM GPU VRAM Latency RPS
[W] [%] [%] [%] [%] [ms]

H W G H W G H W G H W G H W G H W G H W G

Robot (direct) - 88 - - 25 - - 10 - - 39 - - 26 - - 148 - - 10.0 -

Robot 96 97 95 32 28 25 11 11 11 39 40 43 26 26 26 152 155 182 10.0 10.0 10.0

Ethernet/Edge 49 50 48 33 33 32 4 4 4 0 0 0 0 0 0 152 158 164 9.8 10.0 10.0

Wi-Fi/Edge 49 49 49 32 33 32 5 5 5 0 0 0 0 0 0 156 165 1668 9.4 9.9 10.0

5G/Cloud 47 49 57 29 33 57 4 4 4 0 0 0 0 0 0 225 204 512 5.5 9.7 9.9

Ethernet/Cloud 38 38 37 26 26 23 4 4 4 0 0 0 0 0 0 149 175 575 10.0 10.0 10.0

Wi-Fi/Cloud 38 38 48 28 25 32 4 4 4 0 0 0 0 0 0 154 183 385 8.6 10.0 10.0

TABLE I. THE RESULTS FOR 10 FPS INPUT VIDEO. ALL VALUES ARE MEDIAN FOR 60 SECONDS OF DATA. THE RPS REPRESENTS RESULTS PER
SECOND, I.E., HOW MANY FRAMES WERE PROCESSED EACH SECOND. THE H, W, AND G DENOTE THE USED IMAGE TRANSPORT METHOD, I.E., HTTP,

WEBSOCKETS (SOCKETIO), AND GSTREAMER.

Power CPU RAM GPU VRAM Latency RPS
[W] [%] [%] [%] [%] [ms]

H W G H W G H W G H W G H W G H W G H W G

Robot (direct) - 130 - - 46 - - 10 - - 87 - - 26 - - 113 - - 21.6 -

Robot 134 133 132 55 54 51 11 11 11 79 79 86 26 26 26 125 127 127 19.6 19.7 21.3

Ethernet/Edge 52 52 52 42 42 38 4 4 4 0 0 0 0 0 0 126 129 138 17.5 18.3 20.9

Wi-Fi/Edge 51 52 51 40 41 40 5 5 5 0 0 0 0 0 0 132 142 141 15 16.4 18.9

5G/Cloud 57 51 59 29 41 63 4 4 4 0 0 0 0 0 0 236 182 272 5.2 17.2 21.1

Ethernet/Cloud 38 41 39 40 33 63 4 4 4 0 0 0 0 0 0 140 144 148 11.6 19.3 21.3

Wi-Fi/Cloud 48 40 50 34 33 37 4 4 4 0 0 0 0 0 0 130 145 166 9.9 17.5 21.1

TABLE II. THE RESULTS FOR 25 FPS INPUT VIDEO. ALL VALUES ARE MEDIAN FOR 60 SECONDS OF DATA. THE RPS REPRESENTS RESULTS PER
SECOND, I.E., HOW MANY FRAMES WERE PROCESSED EACH SECOND. THE H, W, AND G DENOTE THE USED IMAGE TRANSPORT METHOD, I.E., HTTP,

WEBSOCKETS (SOCKETIO), AND GSTREAMER.

• Edge - AMD Ryzen 7 1700X, 8 cores @ 3,4 GHz with
32 GB RAM and Nvidia GeForce GTX 1050 Ti with
4 GB RAM, running Ubuntu 20.04 operating system

• Cloud - AMD Ryzen 7 1700X, 8 cores @ 3,4 GHz
with 32 GB RAM and Nvidia GeForce GTX 1050 Ti
with 4 GB RAM, running Ubuntu 20.04 operating
system

The robot and the edge computers were two different
computers with similar specifications. The cloud platform was
a computer with exactly the same specifications as the edge
platform. We have utilized three different types of network
connectivity for the evaluation. The Ethernet and the WiFi
were utilized for connection to both edge and cloud platforms.
In contrast, the 5G connection was only used for connection
to the cloud platform because we used the services of the
commercial operator without access to their infrastructure or
dedicated slices, so the edge could not be accessed directly.
The Ethernet connection was made using a standard Gbit
Ethernet line with a SOHO switch. The Wi-Fi connection
utilizes the USB-connected IEEE 802.11ac dongle and SOHO
Wi-Fi router. To enable the 5G connectivity, the Netgear
MR5200 5G modem, connected to the robot platform via
Ethernet, was used. The modem was connected to the Sub-
6GHz (n1 2100 MHz) network with PLMN code 23003. The
network topology used for the evaluation is presented in fig. 2.
Power consumption was measured using Shelly 1 PM, and
data were obtained using a local REST API at 1 Hz. All other
measurements were made at 10 Hz. The input video, obtained

from a real use case of a project partner, was 60 seconds long,
with h264 encoding. There were two variants of the video –
10 FPS and 25 FPS. All measurements were done for both of
them.

The robot and the edge were located in the same room
and within the same network subnet (for Ethernet and Wi-Fi
connectivity). The cloud platform was located in a different
location, reachable only through the public internet. The eval-
uation was carried on with three different methods of image
data transfer: sending the JPEG-compressed images to the
HTTP endpoint, sending the JPEG-compressed and base64
encoded image using the SocketIO library, and sending the
h264 video stream using the GStreamer (denoted as H, W,
and G respectively, in the tables I and II). All methods were
tested while the network application was deployed on each
platform, including the robot. Besides, on the robot platform,
one more test was carried out. The detection algorithm was
executed directly without the proposed framework to identify
the overhead of the network application interface.

The results, as shown in Table I and Table II, clearly
indicate that offloading makes sense for lowering power con-
sumption on the robot. The power is lower in all cases when
the algorithm does not run on the robot, even though there is
some additional processing overhead associated with encoding
individual images or a stream. Latency is slightly higher for
Ethernet and Wi-Fi connections, which can be considered
acceptable. However, it is approximately double for a 5G
connection, which we attribute to the usage of a commercial



network. With a private network, it should be possible to obtain
substantially better results. For the 10 FPS video, all measured
variants achieved approximately 10 FPS for results. There is
much higher variability for the 25 FPS one, and it seems
that, for cases where the network application is offloaded,
HTTP has worse performance than other transport methods.
With an application in the cloud, CPU usage is lower, except
for GStreamer transport, which has to be further investigated.
RAM usage is lower in all cases. When running non-locally,
the GPU is not used; therefore, its usage is zero. This can be
seen as an advantage as GPU might be omitted, making robot
hardware simpler.

VI. CONCLUSION

The paper presented a framework for network applications
designed and developed as a part of the 5G-ERA Project efforts
towards enhancing robot autonomy through intelligent offload-
ing of computational tasks to the cloud. The framework’s archi-
tecture is simple and general, using well-known and supported
technologies such as HTTP, SocketIO, and GStreamer. It is
ROS-agnostic and does not rely on VPN and multicast (used by
DDS), which is unusable with some cloud providers. The main
intent is to allow fast packaging of the existing algorithms into
containerized network applications with minimal effort. There
are supportive libraries for both network application (server)
and client publicly available, as well as the reference imple-
mentation of the network application using the MMDetection
package, which can be configured, without any changes to the
code, to perform various object detection tasks or take as a
template and adapted for other use cases. Such applications
can then benefit from compatibility with the 5G-ERA Project
ecosystem. The reference implementation was evaluated on
three platforms (robot, edge, and cloud) and with various types
of transport for image data (HTTP, SocketIO, GStreamer). The
results have shown that deployment of an object detection
algorithm in the form of the network application, based on our
framework, is achievable and leads to a significant decrease in
power consumption while preserving reasonable performance.
It turned out that using a commercial 5G network does not
possess any advantage over Wi-Fi and a private network is
needed when low latency and high reliability are needed.

So far, we have focused on applications where a client
sends images and receives some data, e.g., object detection
results, as it is probably the most common use case for mobile
robots. The following research will evaluate more delicate use
cases such as SLAM or server-based augmented reality. Also,
the framework will be extended from the currently supported
1 : 1 communication schema to 1 : n and n : m. Lastly,
automatic failure detection and recovery will improve the
framework’s robustness.
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