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Abstract

1. Introduction
Our submission is a collaborative effort of BUT, Phonexia and

Omilia.

2. Data
2.1. Fixed condition

For the fixed training condition we used only data allowed for
this condition by the evaluation plan [1]:

e 2017 NIST LRE Development Set and previous NIST
LRE training data (LDC2022E16)

¢ 2017 NIST LRE Test Set (LDC2022E17)
¢ 2022 NIST LRE Development Set (LDC2022E14)
¢ VoxLingualO7 [2]

2.2. Data for Open condition

There are 2 systems trained for open condition and each is trained
on different datasets, therefore it will be described later within
the description of the systems.

2.3. BUTdev

This data is a dev set for NIST LRE 2022. It was used to
train one backend for open condition system. It contains 14
target languages from NIST LRE 2022 but is different from
LDC2022E14. It has 8491 files/trials, 34 hours of speech after
energy based VAD. For most of the languages we had between
20 to 120 minutes of data, only for 2 languages we had more
(4 and 18 hours). The data come from LWAZI [3], ADI17 [4],
LORELEI [5], NIST LRE 2015, NIST SRE 2019 and VOA'.

The work was supported by Czech Ministry of Interior project
No. VJ01010108 "ROZKAZ”, Czech National Science Foundation
(GACR) project NEUREM3 No. 19-26934X, Czech Ministry of Ed-
ucation, Youth and Sports project no. LTAIN19087 “Multi-linguality
in speech technologies”, and Horizon 2020 Marie Sklodowska-Curie
grant ESPERANTO, No. 101007666. Computing on IT4I supercom-
puter was supported by the Czech Ministry of Education, Youth and
Sports through the e-INFRA CZ (ID:90140).
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3. Subsystems
3.1. VAD

If not stated otherwise we used energy based VAD for systems
described below. For each test file we train Gaussian Mixture
model (GMM) in unsupervised fashion on this recording. The
GMM have 3 Gaussian components. We discard the frames
assigned to the Gaussian which represents the lowest energy
frames in the recording. This VAD does not use any pretrained
parameters.

3.2. Fixed condition — ResNet100

The ResNet100 system was inspired by the speaker ID system
from [6] with a different number of output channels for each
stage (32, 64, 128, 256). In each ResNet block, the frequency-
wise Sqeeze-Excitation (fwSE) [7] block was incorporated with
a bottleneck size of 128.

The input features were 80-dimensional log Mel-filterbanks
extracted with a window length of 25 ms and a frame-shift of
10 ms. On randomly selected 4s chunks of training utterances,
we applied Kaldi-style augmentation using MUSAN [8] corpus
and RIR [9] corpus (additive noise, music, and reverberation).
The features were mean-normalized with a floating window of
3s.

The system was trained for 3 epochs on training exam-
ples generated by KALDI (egs archives) with AM-softmax loss,
where we set the margin to 0 and the scale to 32. The learning
rate was scheduled in the same way as in [6]. For the 6% of
the training process (warmup), the learning rate was linearly
increased from le-5 to 0.1, then, the learning rate was fixed
for 20% of the training process (plateau) and exponentially de-
creased with a rate of 0.5 after each 8% of the training process
for the rest of the training. Stochastic Gradient Descent (SGD)
was used with a weight decay of le-4 and momentum of 0.9.
The network was trained on 4 GPUs with a total batch size of
512 (128 per GPU) and syncbatchnorm per 2 GPUs.

The system is 160x FTRT (excluding feature and VAD cal-
culation) on RTX 2080 Ti GPU, and its memory consumption
is roughly 900MB.



3.3. Fixed condition — ResNet34-CE, ResNet34-AAM,
ResNet34-2head

Models ResNet34-CE, ResNet34-AAM, and ResNet34-2head
are based on the same backbone architecture. They differ in
slight modifications of the training procedure. What follows is
the description of shared settings across the models.

The backbone architecture is derived from the standard vi-
sion model [10]. As opposed to the original ResNet34, the first
convolution has a kernel size of 3 and a stride of 1. The stages of
the network have (64, 128, 256, 256) channels. 64-dimensional
Mel-filterbank features constitute the input to the model, where
window length and shift are 25 ms and 10 ms, respectively.
We limit the input example length to 300 frames. After the
initial frame-wise processing, internal features are aggregated
with statistics (mean and standard deviation) pooling. Statis-
tics are projected to 256-dimensional embeddings subsequently
utilized in the backend stage. The models were trained for lan-
guage classification on 8-GPU compute nodes by SGD with a
momentum of 0.9. We regularized the models with a weight
decay with a factor of le-4. Each per-replica minibatch com-
prised 64 examples. During the initial warm-up stage (first 10k
training steps), the learning rate increased from 0O to 0.2. Subse-
quently, it was multiplied by a factor of 0.5 every time a plateau
on a cross-validation loss was reached. The cross-validation set
was derived from the training set.

The models differ in the objective function they minimized.
ResNet34-CE was trained with a cross-entropy objective, whereas
for ResNet34-AAM, we used additive angular margin loss (AAM)
[11] with a margin set to 0 and a scale to 30. Both ResNet34-CE
and ResNet34-AAM were trained on the VoxLingualO7 dataset
[2]. We did not apply VAD for VoxLingual07 corpus. Develop-
ment and evaluation data of the challenge contain fine-grained
labels (at the level of dialects), which contradicts the coarse-
grained labels of VoxLingualO7 (e.g., for English and Arabic
language). To allow the ResNet34-AAM network to learn more
than one representation per VoxLingual07 languages, we adopted
sub-center ArcFace [12] with 3 sub-centers.

ResNet34-2head optimized the same AAM objective as ResNet34-

AAM and also utilized 3 sub-centers for classes. Contrary to
previous systems, it was trained on VoxLingual(Q7 and NIST
LRE 2017 datasets. They contain labels of different granular-
ity. To tackle this issue, the model has two classification heads
(one for each corpus). Head and example correspondence to the
dataset is taken into account when computing the loss.

The ResNet34 models are approximately 52x FTRT (in-
cluding feature extraction and VAD calculation) on Nvidia A100-
SXM4 GPU, and their memory consumption is around 640MB.

3.4. ECAPA-TDNN

As an alternative to ResNet systems, we trained also ECAPA-
TDNN [13] where we followed the recipe from SpeechBrain.
The model contains approximately 14M parameters and is trained
with AAM-Softmax with a margin set to 0. The targets are
the languages contained in the LDC2022E16 and Voxlingua
datasets. All data were downsampled to 8KHz before training.

The ECAPA-TDNN model runs approximately 70x FTRT
(including feature extraction and VAD calculation) on Nvidia

A100-SXM4 GPU, and the memory consumption is around 400MB.

2https://github.com/speechbrain/speechbrain/

3.5. Fixed condition — RepVGG

The system based on the RepVGG architecture utilizes the B1
variant from [14]. The training setup and parameters are the
same as in the training of ResNetl100 except for batch size,
which is 380 in total (95 per GPU).

The RepVGG-based system is 100x FTRT (excluding fea-
ture and VAD calculation) on RTX 2080 Ti GPU, and its mem-
ory consumption is 1170MB.

3.6. Open condition — ResNet101

The ResNet101 model is, in essence, a scaled-up version of
ResNet34 networks. Therefore, it shares multiple settings, in-
cluding the number of channels per stages (64, 128, 256, 256),
statistics pooling, embeddings dimensionality, and optimization
along with learning rate scheduling. Due to increased GPU
memory requirements, each per-replica minibatch contained 32
examples. Input feature extraction is equivalent to that for ResNet34
models. The model was trained with the AAM objective with a
margin of 0 and a scale of 30.

The ResNet101 model is approximately 46x FTRT (includ-
ing feature extraction and VAD calculation) on Nvidia A100-
SXM4 GPU, and its memory consumption is around 840MB.

3.6.1. Training data

The system was trained on two datasets — VoxLingualO7 and
an in-house one. Our dataset comprises 106 languages, 730k
utterances, 9730 hours of speech after energy based VAD. It is
colection of these datasets:

e LDC data - CallFriend, CallHome, Foreign accented en-
glish, Fisher, HKUST Mandarin, NIST LRE & SRE data,
VOA, OGI, OGI22

 data from projects - BABEL, LORELEI [5], MATERIAL,
WELCOME

¢ other sources - KALAKA [15], ADI17 [4], LWAZI [3],
SpeechDat(E) from ELRA, MSIL18 [16], Radio Free
Europe *

3.7. Open condition - XLSR Models

For open condition, we used two systems based on pretrained
x1s-r—1b [17], downloaded from HuggingFace*. We fine-
tune the systems as language classifiers with TDNN classifi-
cation head. We adopted TDNN architecture from [18]. The
systems are finetuned with crossentropy loss with Adam [19]
optimizer. The only difference between our two x1s—r sys-
tems is the learning rate.

3.7.1. Training data

We finetuned our x1s—r systems on following data: VoxLin-
gua]O75 [2], LWAZI®, and telephony dataset internally called
PHXManylang, containing 7300 h of speech (after processing
with VAD) in 325 000 utterances and 83 languages. Main in-
gredients of PHXManylang are: CommonVoice (eu, cy, es, sl,
nl, et, fa, ca, de), LDC datasets 96546, 96S47, 96548, 96549,
96S50, 96551, 96S52, 96S53, 96S54, 96S55, 96S56, 96S57,
96S58, 96S59, 96560, 2004513, 2005507, 2005515, 2006529,

2006834, 2006543, 2006544, 2007502, 2009505, 2011501, 2011504,

3https://www.rferl.org/
“https://huggingface.co/facebook/wav2vec2-xls-r-1b
Shttp://bark.phon.ioc.ee/voxlingual 07/
Shttps://sites.google.com/site/lwazispeechcorpus?pli=1



2011S05,2011S07,2011S09, 2011510, 2013502, 2013S04, 2013507, where m; is the class-dependent mean vector, and A~ tisaco-
2013508, 2014S06, 2015507, 2016502, 2016506, 2016S08, 2016S09, variance matrix shared by all classes. Then, the class-conditional
2016510, 2016512, 2016S13,2017S01, 2017503, 2017505, 2017508, log-likelihood for r; given language ¢ can be obtained as:
2017513, 2017819, 2017522, 2018S02,2018S07, 2018513, 2018516,

2019503, 2019S08. Another part of PHXManylang is tele-
phony speech extracted from VOA broadcast recordings — 2200
hours, 51 000 utterances, 42 languages (out of which Ndebele,
Oromo and Tigrinya are among NIST LRE22 target languages).
Last part of PHXManylang are proprietary datasets, mostly from
callcenters — 1100 hours, 87 000 utterances, 13 languages (hr,
cs, nl, en, fa, fr, de, it, 1b, pl, ru, sk, es).

Data from VoxLingual(Q7 were used without augmentation
and without VAD. For data from other datasets, we used Kaldi
[20] augmentation (reverberation, Musan noise, Musan music),
and we applied VAD. Our VAD implementation is based on
BUT Hungarian phoneme recognizer’, which vas converted to
VAD by mapping all phonemes to speech.

3.7.2. Training procedure

We construct training batches by iterating over all utterances in
our dataset and choosing randomly 4s chunks from each utter-
ance. Most of our data is 8 kHz, so we upsample it to 16 kHz,
which is input expected by x1s-r. For VoxLingualQ7, which
is 16 kHz, we randomly, with 50% probability, downsample
chunks to 8 kHz and upsample back to 16 kHz.

We ran our finetuning in bloat 16 on 2 GPUs with batch
size 32 in total (i.e., 16 per GPU), without syncbatchnorm. Train-
ing script is implemented in Torch + HuggingFace and we switch
off some features which are the default for HuggingFace x1s-r
in train mode: layerdrop and random input masking. Similarly,
we are keeping x1s—r dropouts in eval mode during training.
We apply weight decay 1.0e-6.

We finetune for 6 epochs. For TDNN head, we are using the
same learning rate for both our systems, with a scheduler which
first warms up the learning rate to the nominal value, then keeps
it constant, and then decays it back to zero. Warm up takes 0.05
T and the constant phase 0.475 T, where T is the duration of
the whole training. Our nominal learning rate for the TDNN
head is 1.0e-3. For x1s-r backbone, we first keep it frozen
(LR=0) for 0.3 T, then we warmup LR for 0.1 T and then decay
(without constant phase). The nominal x1s-r learning rate for
our systems is 1.0e-6 and 3.0e-6, respectively.

3.7.3. Embedding extraction

For embedding extraction, we upsample the competition data
to 16kHz and process them with a sliding window of maximal
length 20s. We scan the whole utterance by shifting the window
by 2s and then average embeddings obtained from all windows.
This approach is very inefficient because it scans the same part
of audio up to 10x. So it’s only 8x FTRT on RTX 2080 Ti GPU,
with 9GB memory consumption.

4. Classifiers

For the majority of the embeddings, the final log-likelihood
scores were generated by Gaussian Linear Classified (GLC).
GLC is the generative model that assumes that for each class,
the embeddings r; were sampled from the Gaussian distribu-
tion:

rj ~N(m;, A", (1)

https://speech.fit.vutbr.cz/software/phoneme-recognizer-based-
long-temporal-context

1 1
log P(I‘,‘j | 7,) = 5 log |A| — 5(1‘]' — mi)TA(rj — mz) + k,
@)

where k is the constant, not depending on the data. The pa-
rameters of GLC are obtained by Maximum-Likelihood esti-
mation. In all cases, we use half of the LRE22 development
set to estimate the GLC parameters®. For ResNet34 systems
from the fixed condition and ResNet101 from the open condi-
tion, the training data were expanded by including the embed-
dings extracted from the augmented version of LRE22 develop-
ment set (one augmented utterance per one original). Finally,
for ResNet101 embeddings, we trained the second GLC back-
end on the augmented version of LRE22 development set and
BUTdev utterances.

Unlike all the other systems, the embeddings extracted from
XLS-R-1b (3e-6) model were classified using Probabilistic Lin-
ear Discriminant Analysis (PLDA) model. In this case, we train
the PLDA on a half of LRE22 development set using languages
as labels. Then, to generate the vector of scores, each of the test
utterances is scored against 14 enrollment models. Each enroll-
ment model is composed of training utterances belonging to the
same language. We average the embeddings from the enroll-
ment segments sharing the same session id, i.e., the final score
for each language is the log-likelihood ratio (LLR) score for the
multi-enroll/single-test verification trial, with the number of en-
rollment segments equal to the number of sessions used from a
given language.

For most of the systems, before training the back-end (GLC
or PLDA), we reduce the dimensionality of the embeddings
by Principal Component Analysis (PCA); the respective target
PCA dimensionalities are reported in Table 1. For some of the
embeddings, the target dimensionality after PCA was selected
automatically: there was an obvious gap in the eigenvalues of
the covariance matrix estimated on the training data, i.e., some
dimensions had very little variability compared to the others.
For the embeddings, where we did not observe a similar pat-
tern: the eigenvalues were gradually increasing when sorted,
we experimented with several options for PCA dimensionality
and selected the one performing the best on the held-out devel-
opment set.

5. Calibration and fusion

After retrieving the scores from the individual systems, we pro-
ceeded with two additional steps: calibration and fusion.

We utilize Logistic Regression (LR) calibration: a single
scalar and a vector of offsets (one per language) are learned by
optimizing the cross-entropy objective. We used a uniform prior
over 14 language classes when computing the objective. During
model development, we trained the calibration parameters on a
half of the LRE22 development set and tested the performance
on the held-out half of the development set. The calibration
parameters are learned on the same data as was used to train the

8Notice that we used only one half of LRE22 development set for
training the backend and calibration parameters during the system de-
velopment. The second half was used to track the performance. This
is consistent with the description of the classifiers and calibration and
with the results of Table 1. For the final submission, the selected sys-
tems were retrained on the whole LRE22 development set and submit-
ted without testing.



classifier. When training the final model for the submission, we
used the whole LRE22 development set for both back-end and
calibration training.

The calibration stage was applied to all of the systems sub-

mitted to the fixed condition and to two systems eligible for the
open condition: SBN i-vector and one of ResNet101. The re-
maining three systems submitted to the open condition were not
calibrated due to the low amount of errors that they had on the
calibration set.

In all cases, the fusion step did not require training any pa-

rameters and consisted of averaging the (calibrated) scores from
the individual systems.
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Table 1: The performance of the submitted systems on the half of LRE 2022 development set. The second half was used to train the
classifier and calibration parameters. The systems marked with ”*” are submitted as contrastive single systems.

Embeddings Back-end Calibration minC actC minC  actC

Fixed condition

1* ResNet100 PCA 117, GLC LR 0.294 0.314 0.250 0.256
2 RepVGG PCA 117, GLC LR 0.340 0.373 0266 0.275
3 ResNet34-CE PCA 100, GLC LR 0.330 0.354 0268 0.275
4 ResNet34-2head GLC LR 0274 0.296 0.228 0.239
5 ResNet34-AAM PCA 100, GLC LR 0313 0329 0283 0.284
6 ECAPA-TDNN PCA 100, GLC LR 0.409 0458 0342 0.354
Primary submission 1+2+3+4 0.235 0.243 0.191 0.193

Contrastive submission 14+2+3+4+5+6 0236 0.244 0.193 0.194

Open condition

7* XLS-R-1b LR=1e-6 PCA 100, GLC - 0.113 0.123 0.102 0.110
8 XLS-R-1b LR=3e-6 PCA 300, PLDA - 0.114 0.130 0.095 0.104
9 ResNet101 PCA 151, GLC - 0.167 0.182 0.152 0.163
10*  ResNet101 PCA 151, GLC(+BUTdev) LR 0.172 0.181 0.148 0.152
11*  LRE 2017 BUT BabelSBN ivectors [21]  PCA 100, GLC LR 0379 0.392 0307 0.310

Primary submission 7+8+9 0.097 0.108 0.082 0.088




