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H
umans can listen to a target speaker even in challenging 
acoustic conditions that have noise, reverberation, and inter-
fering speakers. This phenomenon is known as the cocktail 
party effect. For decades, researchers have focused on ap-

proaching the listening ability of humans. One critical issue is 
handling interfering speakers because the target and nontarget 
speech signals share similar characteristics, complicating their 
discrimination. Target speech/speaker extraction (TSE) isolates 
the speech signal of a target speaker from a mixture of several 
speakers, with or without noises and reverberations, using clues 
that identify the speaker in the mixture. Such clues might be a 
spatial clue indicating the direction of the target speaker, a video 
of the speaker’s lips, and a prerecorded enrollment utterance from 

which the speaker’s voice characteristics can be derived. TSE is an 
emerging field of research that has received increased attention in 
recent years because it offers a practical approach to the cocktail 
party problem and involves such aspects of signal processing as 
audio, visual, and array processing as well as deep learning. This 
article focuses on recent neural-based approaches and presents an 
in-depth overview of TSE. We guide readers through the differ-
ent major approaches, emphasizing the similarities among frame-
works and discussing potential future directions.

Introduction
In everyday life, we are constantly immersed in complex acous-
tic scenes consisting of multiple sounds, such as a mixture of 
speech signals from multiple speakers and background noise 
from air conditioners and music. Humans naturally extract 
relevant information from such noisy signals as they enter 
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our ears. The cocktail party problem is a typical example [1], 
where we can follow the conversation of a speaker of interest 
(the target speaker) in a noisy room with multiple interfering 
speakers. Humans can manage this complex task due to selec-
tive attention, or a selective hearing mechanism, that allows 
us to focus our attention on a target speaker’s voice and ignore 
others. Although the mechanisms of human selective hearing 
are not fully understood yet, many studies have identified es-
sential cues exploited by humans to attend to a target speaker 
in a speech mixture: spatial, spectral (audio), visual, and se-
mantic cues [1]. One long-lasting goal of speech processing re-
search is designing machines that can achieve similar listening 
abilities as humans, i.e., selectively extracting the speech of a 
desired speaker, based on auxiliary cues.

In this article, we present an overview of recent develop-
ments in TSE, which estimates the speech signal of a target 
speaker in a mixture of several speakers, given auxiliary cues 
to identify the target. Alternative terms in the literature for 
TSE include informed source separation, personalized speech 
enhancement, and audiovisual speech separation, depending  
on the context and the modalities involved. In the following, we 
call auxiliary cues clues since they represent hints for identify-
ing the target speaker in the mixture. Figure 1 illustrates the 
TSE problem and shows that by exploiting the clues, TSE can 
focus on the voice of the target speaker while ignoring other 
speakers and noise. Inspired by psychoacoustic studies [1], sev-
eral clues have been explored to tackle the TSE problem, such 
as spatial clues that provide the direction of the target speaker 
[2], [3], visual clues from video of the speaker’s face [4], [5], 
[6], [7], [8], [9], and audio clues extracted from a prerecorded 
enrollment recording of the speaker’s voice [10], [11], [12].

The TSE problem is directly related to human selective 
hearing, although we approach it from an engineering point 
of view and do not try to precisely mimic human mechanisms. 
TSE is related to other speech and audio processing tasks, such 
as noise reduction and blind source separation (BSS), that do 
not use clues about the target speaker. Although noise reduc-
tion does suppress the background noise, it cannot well handle 
interfering speakers. BSS estimates each speech source signal 
in a mixture, which usually requires estimating the number of 
sources, a step that is often challenging. Moreover, it estimates 
the source signals without identifying them, which leads to 
global permutation ambiguity at its output; it remains ambigu-
ous which of the estimated source signals corresponds to the 
target speaker. In contrast, TSE focuses on the target speaker’s 
speech by exploiting clues without assuming knowledge of the 
number of speakers in the mixture and avoids global permu-
tation ambiguity. It thus offers a practical alternative to noise 
reduction and BSS when the use case requires focusing on a 
desired speaker’s voice.

Solving the TSE problem promises real implications for the 
development of many applications: 1) robust voice user inter-
faces and voice-controlled smart devices that respond only to 
a specific user, 2) teleconferencing systems that can remove 
interfering speakers close by, and 3) hearing aids/hearables 
that can emphasize the voice of a desired interlocutor.

TSE ideas can be traced back to early works on beamformers 
[2]. Several works also extended BSS approaches to exploit clues 
about the target speaker [4], [5], [12]. Most of these approaches 
required a microphone array [5] or models trained on a relatively 
large amount of speech data from the target speaker [4]. The 
introduction of neural networks (NNs) enabled the building of 
powerful models that learn to perform complex conditioning on 
various clues by leveraging large amounts of speech data of vari-
ous speakers. This evolution resulted in impressive extraction 
performance. Moreover, neural TSE systems can operate with a 
single microphone and with speakers unseen during the training 
of the models, allowing more flexibility.

This overview article covers recent TSE development and 
focuses on neural approaches. Its remaining sections are orga-
nized as follows. In the “Problem Definition” section, we for-
malize the TSE problem and its relation to noise reduction and 
BSS and introduce its historical context. We then present a tax-
onomy of TSE approaches and motivate the focus of this over-
view article in the “TSE Taxonomy” section. We describe a 
general neural TSE framework in the “General Framework for 
Neural TSE” section. The later sections (“Audio-Based TSE,” 
“Visual/Multimodal Clue-Based TSE,” and “Spatial Clue-
Based TSE”) introduce implementations of TSE with different 
clues. We discuss extensions to other tasks in the “Extension 
to Other Tasks” section. Finally, we conclude by describing 
the outlook on remaining issues in the “Remaining Issues and 
Outlook” section and provide pointers to available resources 
for experimenting with TSE in the “Resources” section.

Problem definition

Speech recorded with a distant microphone
Imagine recording a target speaker’s voice in a living room by 
using a microphone placed on a table. This scenario represents 
a typical use case of a voice-controlled smart device or a video 
conferencing device in a remote work situation. Many sounds 
may co-occur while the speaker is speaking, e.g., a vacuum cleaner, 
music, children screaming, voices from another conversation, 
and a TV. The speech signal captured at a microphone thus con-
sists of a mixture of the target speaker’s speech and interference 
from the speech of other speakers and background noise. In this 
article, we do not explicitly consider the effect of reverberation 
caused by the reflection of sounds on the walls and surfaces in 
a room, which also corrupt the recorded signal. Some of the ap-
proaches we discuss implicitly handle reverberation. 

Target Speech
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FIGURE 1. The TSE problem and examples of clues.
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We can express the mixture signal recorded at a micro-
phone as
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v Rm T!  are the time-domain signal of the mixture, the 
target speech, the interference speech, and noise signals, 
respectively. Variable T represents the duration (number of 
samples) of the signals, m is the index of the microphone in 
an array of microphones, s represents the index of the tar-
get speaker, and k is the index for the other speech sources. 
We drop microphone index m whenever we deal with single-
microphone approaches. In the TSE problem, we are inter-
ested in recovering only the speech of the target speaker s, 

,xs
m  and view all the other sources as undesired signals to 

be suppressed. We can thus define the interference signal as 
.i Rm T!  Note that we make no explicit hypotheses about the 

number of interfering speakers.

TSE problem and its relation to BSS and noise reduction
The TSE problem is to estimate the target speech, given a clue, 

,Cs  as

 , ;TSEx y Cs s
TSEi=t ^ h (2)

where xst  is the estimate of the target speech and ·;TSE TSEi^ h 
represents a TSE system with parameters .TSEi  The clue, ,Cs  
allows identifying the target speaker in the mixture. It can be 
of various types, such as a prerecorded enrollment utterance, 

;C( )
s
a  a video signal capturing the face and lip movements of the 

target speaker, ;C( )
s
v  and such spatial information as the direc-

tion of arrival (DOA) of the speech of the target speaker, .C( )
s
d

In the later sections, we expand on how to design TSE sys-
tems. Here, we first emphasize the key differences among 
TSE and BSS and noise reduction. Figure 2 compares these 
three problems.

BSS [13], [14] estimates all the source signals in a mixture 
without requiring clues:

 { , , } ( ; )BSSx yx K1
BSSf i=t t  (3)

where ·;BSS BSSi^ h represents a separation system with pa-
rameters ,BSSi  xkt  are the estimates of the speech sources, 
and K is the number of sources in the mixture. As seen in 
(3), BSS does not and cannot differentiate the target speech 

from other speech sources. Therefore, we cannot know in 
advance which output corresponds to the target speech; i.e., 
there is a global permutation ambiguity problem between 
the outputs and the speakers. Besides, since the number of 
outputs is given by the number of sources, the number of 
sources K must be known or estimated. Comparing (2) and 
(3) emphasizes the fundamental difference between TSE 
and BSS: 1) TSE estimates only the target speech signal, 
while BSS estimates all the signals, and 2) TSE is condi-
tioned on speaker clue ,Cs  while BSS relies only on the 
observed mixture. Another setup sitting between TSE and 
BSS is a task that extracts multiple target speakers, e.g., ex-
tracting the speech of all the meeting attendees, given such 
information about them as enrollment and videos of all the 
speakers. Typical use cases for BSS include applications 
that require estimating speech signals of every speaker, 
such as automatic meeting transcription systems.

Noise reduction is another related problem. It assumes that 
the interference consists only of background noise, i.e., ,i v=  
and can thus enhance the target speech without requiring clues:

 ;Denoise yxs
Denoisei=t ^ h (4)

where (·; )Denoise Denoisei  represents a noise reduction sys-
tem with parameters .Denoisei  Unlike BSS, a noise reduction 
system’s output consists only of target speech ,xst  and there is 
thus no global permutation ambiguity. This is possible if the 
background noise and speech have distinct characteristics. For 
example, we can assume that ambient noise and speech signals 
exhibit different spectrotemporal characteristics that enable 
their discrimination. However, noise reduction cannot suppress 
interfering speakers because it cannot discriminate among dif-
ferent speakers in a mixture without clues. Some works pro-
pose to exploit clues for noise reduction and apply ideas similar 
to TSE to reduce background noise and, sometimes, interfering 
speakers. In the literature, this is called personalized speech 
enhancement, which, in this article, we view as a special case 
of the TSE problem, where only the target speaker is actively 
speaking [15]. Noise reduction is often used, e.g., in video con-
ferencing systems and hearing aids.

TSE is an alternative to BSS and noise reduction, using a 
clue to simplify the problem. Like BSS, it can handle speech 
mixtures. Like noise reduction, it estimates only the target 
speaker, thus avoiding global permutation ambiguity and 
the need to estimate the number of sources. However, TSE 
requires access to clues, unlike BSS and noise reduction. 
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FIGURE 2. A comparison of (a) the TSE problem, (b) the BSS problem, and (c) the noise reduction problem.
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Moreover, it must internally perform two subtasks: 1) identi-
fying the target speaker and 2) estimating the speech of that 
speaker in the mixture. TSE is thus a challenging problem that 
introduces specific issues and requires dedicated solutions.

A straightforward way to achieve TSE using BSS meth-
ods is to first apply BSS and next select the target speaker 
among the estimated sources. Such a cascade system allows 
the separate development of BSS and speaker identification 
modules. However, this scheme is usually computationally 
more expensive and imports some disadvantages of BSS, 
such as the need to estimate the number of speakers in the 
mixture. Therefore, we focus on approaches that directly 
exploit the clues in the extraction process. Nevertheless, most 
TSE research is rooted in BSS, as argued in the following 
discussion on the historical context.

Historical context
The first studies related to TSE were performed in the 1980s. 
Flanagan et al. [2] explored enhancing a target speaker’s voice 
in a speech mixture, assuming that the target speech originated 
from a fixed and known direction. They employed a micro-
phone array to record speech and designed a fixed beamformer 
that enhanced the signals from the target direction [2], [16]. 
We consider that this work represents an early TSE system that 
relies on spatial clues.

In the mid-1990s, the BSS problem gained attention with 
pioneering works on independent component analysis (ICA). 
ICA estimates spatial filters that separate the sources by rely-
ing on the assumption of the independence of the sources in 
the mixture and the fact that speech signals are non-Gaussian 
[13]. A frequency-domain ICA suffers from a frequency per-
mutation problem because it treats each frequency indepen-
dently. In the mid-2000s, independent vector analysis (IVA) 
addressed the frequency permutation problem by working on 
vectors spanning all frequency bins, which allowed model-
ing dependency among frequencies [13]. Several works have 
extended ICA and IVA to perform TSE, which simplifies infer-
ence by focusing on a single target source. For example, in the 
late 2000s, TSE systems were designed by incorporating the 
voice activity information of the target speaker derived from 
video signals into the ICA criterion, allowing identification 
and extraction of only the target source [5]. In the late 2010s, 
independent vector extraction (IVE) extended IVA to extract 
a single source out of the mixture. In particular, IVE exploits 
clues to guide the extraction process, such as the enrollment of 
the target speaker, to achieve TSE [12]. All these approaches 
require a microphone array to capture speech.

In the first decade of the 2000s, single-channel approaches 
for BSS emerged, such as the factorial hidden Markov model 
(F-HMM) [17] and nonnegative matrix factorization (NMF) 
[18]. These approaches relied on pretrained spectral models of 
speech signals learned on clean speech data. An F-HMM is a 
model of speech mixtures, where the speech of each speaker 
in the mixture is explicitly modeled using a separate HMM. 
The parameters of each speaker HMM are learned on the clean 
speech data of that speaker. The separation process involves 

inferring the most likely HMM state sequence associated with 
each speaker HMM, which requires approximations to make 
inference tractable. This approach was the first to achieve 
superhuman performance using only single-channel speech 
[17]. In the early 2000s, the F-HMM was also among the first 
approaches to exploit visual clues [4]. This framework needs 
clues for all the speakers, a requirement that negates some of 
the advantages of TSE; e.g., the number of speakers must be 
known beforehand. Despite that, the method does not suffer 
from global permutation ambiguity since visual clues iden-
tify the target speaker, and we thus include this work in the 
broader view of TSE methods. In NMF, the spectrogram of 
each source is modeled as a multiplication of prelearned bases, 
representing the basic spectral patterns and their time-varying 
activations. NMF methods have also been extended to multi-
channel signals [13] and used to extract a target speaker [19] 
by using a flexible multisource model of the background. The 
main shortcoming of the F-HMM and NMF methods is that 
they require pretrained source models and thus struggle with 
unseen speakers. Furthermore, the inference employs a com-
putationally expensive iterative optimization.

In the mid-2010s, deep NNs (DNNs) were first introduced 
to address the BSS problem. These approaches rapidly gained 
attention with the success of deep clustering and permutation 
invariant training [20], [21], which showed that single-chan-
nel speaker-open BSS was possible, i.e., separation of unseen 
speakers that are not present in the training data. In particular, 
the introduction of DNNs enabled more accurate and flexible 
spectrum modeling and computationally efficient inference. 
These advances were facilitated by supervised training meth-
ods that can exploit a large amount of data.

Neural BSS rapidly influenced TSE research. For example, 
Du et al. [22] trained a speaker-close NN to extract the speech of 
a target speaker by using training data with mixed various inter-
fering speakers. This work is an initial neural TSE system using 
audio clues. However, using speaker-close models requires a 
significant amount of data from the target speaker and cannot 
be extended to speakers unseen during training. Subsequently, 
the introduction of TSE systems conditioned on speaker char-
acteristics derived from an enrollment utterance significantly 
mitigated this requirement [10], [11], [23]. Enrollment consists 
of a recording of a target speaker’s voice, which amounts to a 
few seconds of speech. With these approaches, audio clue-based 
TSE became possible for speakers unseen during training as long 
as an enrollment utterance was available. Furthermore, the flex-
ibility of NNs to integrate different modalities combined with 
the high modeling capability of face recognition and lipreading 
systems offered new possibilities for speaker-open visual clue-
based TSE [7], [8]. More recently, neural approaches have also 
been introduced for spatial clue-based TSE [3], [24].

TSE has gained increased attention. For example, dedicat-
ed tasks were part of such recent evaluation campaigns as the 
Deep Noise Suppression (DNS) (https://www.microsoft.com/
en-us/research/academic-program/deep-noise-suppression 
-challenge-icassp-2022/) and Clarity (https://claritychallenge. 
github.io/clarity_CC_doc) challenges. Many works have extended 
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TSE to other tasks, such as a direct automatic speech recognition 
(ASR) of a target speaker from a mixture, which is called tar-
get speaker ASR (TS-ASR) [25], [26], and personalized voice 
activity detection (VAD)/diarization [27], [28]. Notably, target 
speaker VAD (TS-VAD)-based diarization [28] has been very 
successful in such evaluation campaigns as CHiME-6 (https://
chimechallenge.github.io/chime6/results.html) and DIHARD-3 
(https://dihardchallenge.github.io/dihard3/results), outperforming 
state-of-the-art diarization approaches in challenging conditions.

TSE taxonomy
TSE is a vast research area spanning a multitude of approaches. 
This section organizes them to emphasize their relations and 
differences. We categorize the techniques using four criteria: 
1) the type of clues, 2) the number of channels, 3) speaker 
close versus open, and 4) generative versus discriminative.  
Table 1 summarizes the taxonomy; the works in the scope of 
this overview article are emphasized in red.

Type of clue
The type of clue used to determine the target speaker is an impor-
tant factor in distinguishing among TSE approaches. The most 
prominent types are audio, visual, and spatial clues. This clas-
sification also defines the main organization of this article, which 
covers such approaches in the “Audio-Based TSE,” “Visual/Mul-
timodal Clue-Based TSE,” and “Spatial Clue-Based TSE” sec-
tions. Other types have been and could be proposed, as we briefly 
discuss in the “Remaining Issues and Outlook” section.

An audio clue consists of a recording of a speech signal 
of the target speaker. Such a clue can be helpful, e.g., in the 
use case of personal devices, where the user can prerecord an 
example of his or her voice. Alternatively, for long recordings, 
such as meetings, clues can be obtained directly from part of 
the recording. The interest in audio clues sharply increased 
recently with the usage of neural models for TSE [10], [11], 
[12]. Audio clues are perhaps the most universal because they 
do not require using any additional devices, such as multiple 
microphones and a camera. However, the performance may be 
limited compared to other clues since discriminating speakers 
based only on their voice characteristics is prone to errors due 
to inter- and intraspeaker variability. For example, the voice 
characteristics of different speakers, such as family members, 
often closely resemble one another. On the other hand, the 
voice characteristics of one speaker may change depending on 
such factors as emotions, health, and age.

A visual clue consists of a video of the target speaker talk-
ing. This type is often constrained to the speaker’s face, some-
times just to the lip area. Unlike audio clues, visual clues are 
typically synchronized with audio signals that are processed, 
i.e., not prerecorded. A few works also explored using just a 
photo of the speaker [37]. Visual clues have been employed 
to infer the activity pattern and location of the target speak-
er [5] and to jointly model audio and visual signals [4], [5]. 
Recent works usually use visual clues to guide discriminative 
models toward extracting the target speaker [7], [8], [9]. Visual 
clues are especially useful when speakers in the recording have 

Table 1. A taxonomy of TSE works.

Type of Clues
Number of  

Microphones
Speaker Close/

Open 

Representative Approaches References Year Audio Visual Spatial Single Multiple Close Open 
Fixed beamforming [2], [16]* 1985 — — ✓ — ✓ — ✓

G
en

er
at

ive

Audiovisual F-HMM [4] 2001 ✓† ✓ — ✓ — ✓ —
ICA with visual voice activity [5] 2007 — ✓ — — ✓ — ✓

Multichannel NMF [19] 2011 ✓† — — — ✓ ✓ —
IVE with x-vectors [12] 2020 ✓ — — — ✓ — ✓

Audiovisual variational autoencoder [29] 2020 — ✓ — ✓ — — ✓

Di
sc

rim
in

at
ive

Speaker-specific network [22] 2014 ✓† — — ✓ — ✓ —
Multichannel SpeakerBeam [30], [10] 2017 ✓ — — — ✓ — ✓

SpeakerBeam [10] 2019 ✓ — — ✓ — — ✓

VoiceFilter [11] 2019 ✓ — — ✓ — — ✓

SpEx [31] 2020 ✓ — — ✓ — — ✓

The conversation [7] 2018 — ✓ — ✓ — — ✓

Looking to listen [8] 2018 — ✓ — ✓ — — ✓

On/off-screen audiovisual separation [9] 2018 — ✓ — ✓ — — ✓

Landmark-based audiovisual speech enhancement [32] 2019 — ✓ — ✓ — — ✓

Multimodal SpeakerBeam [33], [34] 2019 ✓ ✓ — ✓ — — ✓

Audiovisual speech enhancement through  
obstructions

[35] 2019 ✓ ✓ — ✓ — — ✓

Neural spatial filter [3] 2019 ✓ — ✓ — ✓ — ✓

Spatial speaker extractor [24] 2019 ✓ — ✓ — ✓ — ✓

Multichannel multimodal TSE [36] 2020 ✓ ✓ ✓ — ✓ — ✓

Approaches within the scope of this overview article are emphasized in red.
*Since the first works that proposed beamforming were not model-based, we consider them neither generative nor discriminative.
†In speaker-close cases, the models are trained on target speaker’s audio. In this table, we consider this an audio clue.
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similar voices [8]. However, they might be sensitive to physical 
obstructions of the speaker in the video.

A spatial clue refers to the target speaker’s location, e.g., 
the angle from the recording devices. The location can be 
inferred, in practice, from a video of the room or a record-
ing of a speaker in the same position. Extracting the speak-
er based on his or her location has been researched from the 
mid-1980s with beamforming techniques that pioneered 
this topic [2], [16]. More recent IVE models use location 
for initialization [12]. Finally, several works have shown 
that NNs informed by location can also achieve promising 
performance [3], [24]. Spatial clues are inherently appli-
cable only when a recording from multiple microphones is 
available. However, they can identify the target speaker in 
the mixture rather reliably, especially when the speakers 
are stationary.

Different clues may work better in different situations. For 
example, the performance with audio clues might depend on 
the similarity of the voices of the present speakers, and obstruc-
tions in the video may influence visual clues. Hence, it is advan-
tageous to use multiple clues simultaneously to combine their 
strengths. Many works have combined audio and visual clues 
[4], [33], and some have even added spatial clues [36].

Number of microphones
Another way to categorize the TSE approaches is based on the 
number of microphones (channels) they use. Multiple channels 
allow the spatial diversity of the sources to be exploited to help 
discriminate the target speaker from interference. Such an ap-
proach also closely follows human audition, where binaural 
signals are crucial for solving the cocktail party problem.

All approaches with spatial clues require using a microphone 
array to capture the direction information of the sources in the 
mixture [2], [3], [16], [24], [36]. Some TSE approaches that 
exploit audio and visual clues also assume multichannel record-
ings, such as the extensions of ICA/IVA approaches [5], [12].

Multichannel approaches generally generate extracted sig-
nals with better quality and are thus preferable when recordings 
from a microphone array are available. However, sometimes, 
they might fail when the sources are located in the same direc-
tion from the viewpoint of the recording device. Moreover, 
adopting a microphone array is not always an option when 
developing applications, due to cost restrictions. In such cases, 
single-channel approaches are requested. They rely on spectral 
models of speech mixture, using either the F-HMM or, recently, 
NNs, and exploit audio [10], [11] and visual clues [7], [8] to iden-
tify the target speech.

Recent single-channel neural TSE systems have achieved 
remarkable performance. Interestingly, such approaches can 
also be easily extended to multichannel processing by aug-
menting the input with spatial features [3] and combining the 
processing with beamforming [24], [30], as discussed in the 
“Integration With Microphone Array Processing” section. For 
example, using a beamformer usually extracts a higher-qual-
ity signal due to employing a spatial linear filter to perform 
extraction, which can benefit ASR applications [10].

Speaker-open versus speaker-close methods
We usually understand the clues used by TSE as short evidence 
about the target speaker obtained at the time of executing the 
method, e.g., one utterance spoken by the target speaker, a 
video of him/her speaking, and his/her current location. There 
are, however, also methods that use a more significant amount 
of data from the target speaker (e.g., several hours of his or her 
speech) to build a model specific to that person. These meth-
ods can also be seen as TSE except that the clues involve much 
more data.

We refer to these two categories as the speaker-open method 
and speaker-close method. Speaker-open and speaker-close 
categories are sometimes referred to as speaker independent 
and speaker dependent, respectively. We avoid this termi-
nology, as in TSE, all systems are informed about the target 
speaker, and therefore, the term speaker independent might 
be misleading. In speaker-open methods, the data of the tar-
get speaker are available only during the test time; i.e., the 
model is trained on the data of different speakers. In contrast, 
the target speaker is part of the training data in speaker-close 
methods. Many methods in the past were speaker close, e.g., 
[4] and [19], where the models were trained on the clean 
utterances of the target speaker. Also, the first neural models 
for TSE used a speaker-specific network [22]. Most recent 
works on neural methods, which use a clue as an addition-
al input, are speaker-open methods [3], [7], [8], [10], [11]. 
Recent IVE methods [12] are also speaker open; i.e., they 
guide the inference of IVE by using the embedding of a pre-
viously unseen speaker.

Generative versus discriminative
We can classify TSE into approaches using generative and 
discriminative models. Generative approaches model the joint 
distribution of the observations, target signals, and clues. The 
estimated target speech is obtained by maximizing the likeli-
hood. In contrast, discriminative approaches directly estimate 
the target speech signal, given observations and clues.

In the TSE literature, generative models were the dominant 
choice in the pioneering works, including one [4] that used 
HMMs to jointly model audio and visual modalities. IVE [12] 
is also based on a generative model of the mixtures.

The popularity of discriminative models, in particular, 
NNs, has increased since the mid-2010s, and such models 
today are the choice for many problems, including TSE. With 
discriminative models, TSE is treated as a supervised prob-
lem, where the parameters of a TSE model are learned using 
artificially generated training data. The modeling power of 
NNs enables us to exploit large amounts of such data to build 
strong speech models. Moreover, the versatility of NNs enables 
complex dependencies to be learned among different types of 
observations (e.g., speech mixture and video/speaker embed-
dings), which allows the successful conditioning of the extrac-
tion process on various clues. However, NNs also bring new 
challenges, such as generalization to unseen conditions and 
high computational requirements [38]. Some recent works 
have also explored using generative NNs, such as variational 
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autoencoders [29], which might represent a middle ground 
between the traditional generative approaches and those using 
discriminative NNs.

Scope of overview article
In the remainder of our article, we focus on the neural methods 
for TSE emphasized in Table 1. Recent neural TSE approaches 
opened the possibility of achieving high-performance extrac-
tion with various clues. They can be operated with a single mi-
crophone and applied for speaker-open conditions, which are 
very challenging constraints for other schemes. Consequently, 
these approaches have received increased attention from both 
academia and industry.

In the following section, we introduce a general framework 
to provide a uniformized view of the various NN-based TSE 
approaches for both single- and multichannel approaches and 
independent of the type of clues. We then respectively review 
the approaches relying on audio, visual, and spatial clues in the 
“Audio-Based TSE,” “Visual/Multimodal Clue-Based TSE,” 
and “Spatial Clue-Based TSE” sections.

General framework for neural TSE
In the previous section, we introduced a taxonomy that de-
scribed the diversity of approaches to tackle the TSE problem. 
However, recent neural TSE systems have much in common. In 
this section, we introduce a general framework that provides a 
unified view of a neural TSE system, which shares the same 
processing flow independent of the type of clue used. By orga-
nizing the existing approaches into a common framework, we 
hope to illuminate their similarities and differences and estab-
lish a firm foundation for future research.

A neural TSE system consists of an NN that estimates the 
target speech conditioned on a clue. Figure 3 is a schematic 
diagram of a generic neural TSE system that consists of two 
main modules: a clue encoder and a speech extraction module, 
described in more detail in the following.

Clue encoder
The clue encoder pulls out (from the clue, )Cs  information 
that allows the speech extraction module to identify and ex-

tract the target speech in the mixture. We can express the 
processing as

 ( ; )ClueEncoderE Cs s
Cluei=  (5)

where (·; )ClueEncoder Cluei  represents the clue encoder, 
which can be an NN with learnable parameters ,Cluei  and Es  
are the clue embeddings. Naturally, the specific implementa-
tion of the clue encoder and the information carried within Es  
largely depend on the type of clues. For example, when the clue 
is an enrollment utterance, E E R( )

s s
a DEmb

!=  will be a speaker 
embedding vector of dimension DEmb  that represents the voice 
characteristics of the target speaker. When dealing with visual 
clues, E E R( )

s s
v D NEmb

!= #  can be a sequence of the embed-
dings of length N, representing, e.g., the lip movements of the 
target speaker. Here, N represents the number of time frames 
of the mixture signal.

Interestingly, the implementation of the speech extraction 
module does not depend on the types of clues used. To provide 
a description that is independent of the types of clues, hereaf-
ter, we consider that E Rs

D NEmb

! #  consists of a sequence of 
embedding vectors of dimension DEmb  of length N. Note that 
we can generate a sequence of embedding vectors for audio 
clue-based TSE systems by repeating the speaker embedding 
vector for each time frame.

Speech extraction module
The speech extraction module estimates the target speech from 
the mixture, given the target speaker embeddings. We can use 
the same configuration independent of the type of clue. Its 
process can be decomposed into three main parts: a mixture 
encoder, a fusion layer, and a target extractor:

 ( ; )MixEncoderZ yy
Mixi=  (6)

 ( , ; )FusionZ Z Es y s
Fusioni=  (7)

 , ;TgtExtractor Z yxs s
TgtExtractori=t ^ h (8)

where (·; ), (·; ),MixEncoder FusionMix Fusioni i  and TgtExtractor  
(·; )TgtExtractori  respectively represent the mixture encoder, the  
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FIGURE 3. The general framework for neural TSE.
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fusion layer, and the target extractor with parameters , ,Mix Fusioni i  
and ;TgtExtractori  Z Ry

D Ny

! #  and Z Rs
D Ns

! #  are the internal 
representations of the mixture before and after conditioning on 
embedding .Es

The mixture encoder performs the following:

 ( ; )FEY y FEi=  (9)

 ( ; )MixNetZ Yy
MixNeti=  (10)

where FE( · ) and MixNet( · ) respectively represent the fea-
ture extraction process and an NN with parameters FEi  and 

.MixNeti  The feature extractor computes the features from the 
observed mixture signal, .Y RD N! #  These can be such spec-
tral features as magnitude spectrum coefficients derived from 
the short-time Fourier transform (STFT) of the input mixture 
[7], [8], [10], [11]. When using a microphone array, spatial fea-
tures, such as the interaural phase difference (IPD), defined 
in (21) in the “Spatial Clue-Based TSE” section, can also be 
appended. Alternatively, the feature extraction process can be 
implemented by an NN, such as a 1D convolutional layer, that 
operates directly on the raw input waveform of the microphone 
signal [23], [39]. This enables the learning of a feature repre-
sentation optimized for TSE tasks.

The features are then processed with an NN, MixNet( · ), 
which performs a nonlinear transformation and captures the 
time context, i.e., several past and future frames of the sig-
nal. The resulting representation, ,Zy  of the mixture is (at this 
point) agnostic of the target.

The fusion layer, sometimes denoted as an adaptation layer, 
is a key component of a TSE system and allows the condition-
ing of the process on the clue. It combines Zy  with the clue 
embeddings, .Es  Conditioning an NN on auxiliary informa-
tion is a general problem that has been studied for multimodal 
processing and the speaker adaptation of ASR systems. TSE 
systems have borrowed fusion layers from these fields. Table 2 
lists several options for the fusion layer. Some widely used 
fusion layers include 1) the concatenation of Zy  with the clue 
embeddings Es  [7], [8], 2) addition after transforming the 
embeddings with linear transformation L to match the dimen-
sion of ,Zy  3) multiplication [10], 4) a combination of addition 
and multiplication denoted as feature-wise linear modulation 
(FiLM), and 5) a factorized layer [10], [30], i.e., the combina-

tion of different transformations of the mixture representation 
weighted by the clue embedding values. Note that concatena-
tion is similar to addition if a linear transformation follows 
it. Other alternatives have also been proposed, including 
attention-based fusion [40]. Note that the fusion operations 
described here assume just one clue. It is also possible to use 
multiple clues, as discussed in the “Audiovisual Clue-Based 
TSE” section. Some works also employ the fusion repeatedly 
at multiple positions in the model [31].

The last part of the speech extraction module is the target 
extractor, which estimates the target signal. We explain in the 
following the time-frequency masking-based extractor, which 
has been widely used [3], [7], [8], [41]. Recent approaches also 
perform a similar masking operation in the learned feature 
domain [23], [39].

The time-frequency masking approach was inspired by 
early BSS studies that relied on the sparseness assumption of 
speech signals, an idea based on the observation that the ener-
gy of a speech signal is concentrated in a few time-frequency 
bins of a speech spectrum. Accordingly, the speech signals of 
different speakers rarely overlap in the time-frequency domain 
in a speech mixture. Thus, we can extract the target speech by 
applying a time-frequency mask on the observed speech mix-
ture, where the mask indicates the time-frequency bins where 
the target speech is dominant over other signals. Figure 4 shows 
an example of an ideal binary mask for extracting a  target 

Table 2. The types of fusion layers.

Fusion Type Equation Parameters ( )Fusioni

Concatenation* ,Z Z Es y s= 6 @ —
Addition* Z Z LEs y s= + L RD DZ Emb

! #

Multiplication ( )Z Z LEs y s9= L RD DZ Emb

! #

FiLM ( )Z Z L E L Es y s s1 29= + ,L LR RD D D D
1 2

Z ZEmb Emb

! !# #

Factorized  
layer 

( )diagZ L Z es i
D

i y i1

Emb

R= = L Ri
D DZ Z

! #

FiLM: feature-wise linear modulation.
*Concatenation is similar to addition if a linear transformation follows it.
Here, L, L1, and L2 are linear transformations for mapping the dimension of the 
clue embeddings, DEmb, to the dimension of Zy DZ; 9  represents the element-
wise Hadamard multiplication operation of matrices; e i is a vector containing the 
elements of the i-th row of Es; and diag(∙) is an operator that converts a vector into 
a diagonal matrix.
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FIGURE 4. An example of a time-frequency mask processing for speech extraction. The figure shows (a) the spectrogram of the mixture, (b) the time-
frequency mask, and (c) the spectrogram of the extracted signal. The time-frequency mask shows spectrogram regions where the target source is 
dominant. By applying this mask to the mixture, we obtain an extracted speech signal that estimates the target speech. 
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speech in a mixture of two speakers. Such an ideal binary 
mask assumes that all the energy in each time-frequency bin 
belongs to one speaker. In recent mask-based approaches that 
use real-valued (or complex) masks, this assumption, or obser-
vation, is not needed.

The processing of the masking-based extractor can be sum-
marized as

 ( ; )MaskNetM Zs s
Maski=  (11)

 M YXs s 9=t  (12)

 ( ; )Reconstructx Xs s
Reconsti=t t  (13)

where MaskNet( · ) is an NN that estimates the time-frequency 
mask for the target speech,   andM Rs

D N Mask! i#  are the net-
work parameters, and 9 denotes the element-wise Hadamard 
multiplication; Y and Xs

t  are the mixture and the estimated tar-
get speech signals in the feature domain. Equation (12) shows 
the actual extraction process. Here, Reconstruct( · ) is an opera-
tion to reconstruct the time-domain signal by performing the in-
verse operation of the feature extraction of the mixture encoder, 
i.e., either the inverse STFT (iSTFT) or a transpose convolution 
if using a learnable feature extraction. In the latter case, the re-
construction layer has learnable parameters, .Reconsti

There are other possibilities to perform the  extraction 
process. For example, we can modify the MaskNet( · )NN  
to directly infer the target speech signal in the feature 
domain. Alternatively, as discussed in the “Integration With 
Microphone Array Processing” section, we can replace the 
mask-based extraction process with beamforming when a 
microphone array is available.

Integration with microphone array processing
If we have access to a microphone array to record the speech 
mixture, we can exploit the spatial information to extract the 
target speech. One approach is to use spatial clues to identify 
the speaker in the mixture by informing the system about the 
target speaker’s direction, as discussed in the “Spatial Clue-
Based TSE” section. Another approach combines TSE with 
beamforming and uses the latter to perform the extraction pro-
cess instead of (12). For example, we can use the output of a 
TSE system to estimate the spatial statistics needed to compute 
the coefficients of a beamformer steering in the direction of the 
target speaker. This approach can also be used with audio clue- 
and visual clue-based TSE systems and requires no explicit use 
of spatial clues to identify the target speaker in the mixture.

We briefly review the mask-based beamforming approach, 
which was introduced initially for noise reduction and BSS 
[42], [43]. A beamformer performs the linear spatial filtering 
of the observed microphone signals:

 [ , ] [ ] [ , ]X n f f n fW Ys
H=t  (14)

where [ , ]n fX Cs !t  is the STFT coefficient of the estimat-
ed target signal at time frame n and frequency bin f, 

[ ]fW CM!  is a vector of the beamformer coefficients, 
[ , ] [ , ], , [ , ]n f Y n f Y n fY CM T M1 f != 6 @  is a vector of the STFT 

coefficients of the microphone signals, M is the number of mi-
crophones, and H  is the conjugate transpose. We can derive the 
beamformer coefficients from the spatial correlation matrices 
of the target speech and the interference. These correlation 
matrices can be computed from the observed signal and the 
time-frequency mask estimated by the TSE system [30].

This way of combining a TSE system with beamforming 
replaces the time-frequency masking operation of (12) with the 
spatial linear filtering operation of (14). It allows distortionless 
extraction, which is often advantageous when using TSE as a 
front end for ASR [10].

Training a TSE system
Before using a TSE model, we first need to learn its param-
eters: { , , , } .TSE Mix Clue Fusion TgtExtractori i i i i=  Most existing stud-
ies use fully supervised training, which requires a large amount 
of training data consisting of the triplets of speech mixture ,y  
target speech signal ,xs  and corresponding clue Cs  to learn 
parameters .TSEi  Since this requires access to a clean target 
speech signal, such training data are usually simulated by ar-
tificially mixing clean speech signals and noise, following the 
signal model of (1).

Figure 5 illustrates the data generation process using a 
multispeaker audiovisual speech corpus containing multiple 
videos for each speaker. First, we generate a mixture by using 
randomly selected speech signals from the target speaker, the 
interference speaker, and the background noise. We obtain an 
audio clue by selecting another speech signal from the target 
speaker as well as a visual clue from the video signal associ-
ated with the target speech.

The training of a neural TSE framework follows the train-
ing scheme of NNs with error back propagation. The param-
eters are estimated by minimizing a training loss function:

 ,arg min x xL s s
TSEi =

i

t^ h (15)

where L( · ) is a training loss, which measures how close esti-
mated target speech , ;TSE y Cxs s i=t ^ h is to the target source 
signal .xs  We can use a similar loss as that employed for train-
ing noise reduction and BSS systems [14], [39].

Several variants of the losses operating on different 
domains exist, such as the cross entropy between the oracle 
and the estimated time-frequency masks and the mean square 
error loss between the magnitude spectra of the source and the 
estimated target speech. Recently, a negative signal-to-noise 
ratio (SNR) measured in the time domain has been widely 
used [6], [23], [39]:

 ( , ) .log10x x
x x

x
L s s

s s

s
10 2

2
SNR

-
=-

t
t e o  (16)

The SNR loss is computed directly in the time domain, 
which forces the TSE system to learn to correctly estimate 
the magnitude and the phase of the target speech signal. This 
loss has improved extraction performance [23]. Many works 
also employ versions of the loss that are invariant to arbitrary 
scaling, i.e., the scale-invariant SNR (SI-SNR) [39] and linear 
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filtering of the estimated signal, often called the signal-to-
distortion ratio (SDR) [44]. Besides training losses operating 
on the signal and mask levels, it is also possible to train a TSE 
system end to end with a loss defined on the output of an ASR 
system [45]. Such a loss can be particularly effective when 
targeting ASR applications, as discussed in the “Extension to 
Other Tasks” section.

The clue encoder can be an NN trained jointly with a 
speech extraction module [10] and pretrained on a different 
task, such as speaker identification for audio clue-based TSE 
[11] and lipreading for visual clue-based TSE [7]. Using a pre-
trained clue encoder enables the leveraging of large amounts 
of data to learn robust and highly discriminative embeddings. 
On the other hand, jointly optimizing the clue encoder allows 
learning embeddings to be optimized directly for TSE. These 
two trends can also be combined by fine-tuning the pretrained 
encoder and using multitask training schemes, which add a 
loss to the output of the clue embeddings [46].

Considerations when designing a TSE system
We conclude this section with some considerations about the 
different options for designing a TSE system. In the preced-
ing description, we intentionally ignored the details of the NN 
architecture used in the speech extraction module, such as the 
type of layers. Indeed, novel architectures have been and will 
probably continue to be proposed regularly, leading to gradual 
performance improvement. For concrete examples, we refer to 
some public implementations of TSE frameworks presented in 
the “Resources” section.

Most TSE approaches can borrow a network configuration 
from architectures proved effective for BSS and noise reduc-
tion. One important aspect is that an NN must be able to see 
enough context in the mixture to identify the target speaker. 
This has been achieved using such recurrent NN-based archi-
tectures as a stack of bidirectional long short-term memory 
(LSTM) layers [10], convolutional NN (CNN)-based archi-
tectures with a stack of convolutional layers that gradually 
increases the receptive field over the time axis to cover a large 
context [7], [23], and attention-based architectures [47].

The networks in the mixture encoder and the extraction 
process generally use a similar architecture. The best perfor-
mance was reported when using a shallow mixture encoder 
(typically a single layer/block) and a much deeper extraction 
network, i.e., where a fusion layer is placed on the lower part 
of the extraction module. Furthermore, we found in our experi-
ments that the multiplication and FiLM layers usually perform 
well. However, the impact of the choice of the fusion layer 
seems rather insignificant.

For the feature extraction, early studies used spectral 
features computed with the STFT [7], [8], [10]. However, 
most recent approaches employ a learned feature extrac-
tion module, following its success for separation [23], [39]. 
This approach allows direct optimization of the features 
for the given task. However, the choice of input features 
may depend on the acoustic conditions, and some have 
reported superior performance using the STFT under chal-
lenging reverberant conditions [48] and using handcrafted 
filter banks [49].
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FIGURE 5. An example of generating simulation data for training and testing. This example assumes videos are available so that audio and visual clues can be 
generated. No video is needed for audio clue-based TSE. For visual clue-based TSE, we do not necessarily need multiple videos from the same speaker.
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Except for such general considerations, it is difficult to 
make solid arguments for a specific network configuration 
since performance may depend on many factors, such as the 
task, the type of clue, the training data generation, and the net-
work and training hyperparameters.

Audio-based TSE
In this section, we explain how the general framework intro-
duced in the “General Framework for Neural TSE” section can 
be applied in the case of audio clues. In particular, we discuss 
different options to implement the clue encoder, summarize 
the development of audio-based TSE, and present some repre-
sentative experimental results.

Audio clue encoder
An audio clue is an utterance spoken by the target speaker 
from which we derive the characteristics of his or her voice, 
allowing identification in a mixture. This enrollment utterance 
can be obtained by prerecording the user of a personal device 
or with a part of a recording in which a wake-up keyword is 
uttered. The clue encoder is usually used to extract a single 
vector that summarizes the entire enrollment utterance.

Since the clue encoder’s goal is to extract information that 
defines the voice characteristics of the target speaker, embed-
dings from the speaker verification field are often used, such 
as i-vectors and NN-based embeddings (e.g., d-vectors and 
x-vectors). Clue encoders trained directly for TSE tasks are 
also used. Figure 6 describes these three options.

i-Vectors
With their introduction around 2010, i-vectors [50] were the 
ruling speaker verification paradigm until the rise of NN 

speaker embeddings. The main idea behind i-vectors is model-
ing the features of an utterance by using a Gaussian mixture 
model (GMM), whose means are constrained to a subspace and 
depend on the speaker and the channel effects. The subspace 
is defined by the universal background model (UBM), i.e., a 
GMM trained on a large amount of data from many speakers, 
and a total variability subspace matrix. The supervector of the 
means of utterance GMM n  is decomposed:

 m Twn = +  (17)

where m is a supervector of the means of the UBM, T is a 
low-rank rectangular matrix representing the bases spanning 
the subspace, and w is a random variable with standard nor-
mal prior distribution. Since an i-vector is the maximum a 
posteriori estimate of w, it thus consists of values that enable 
the adaptation of the parameters of the generic UBM speaker 
model ( )m  to a specific recording. As a result, it captures the 
speaker’s voice characteristics in the recording.

An important characteristic of i-vectors is that they capture 
both the speaker and channel variability. This case may be desired 
in some TSE applications, where we obtain  enrollment utterances 
in identical conditions as the mixed speech. In such a situation, 
the channel information might also help distinguish the speakers. 
i-Vectors have also been used in several TSE works [10].

NN-based embeddings
The state-of-the-art speaker verification systems predominant-
ly use NN-based speaker embeddings, which were adopted lat-
er for TSE. The common idea is to train an NN for the task of 
speaker classification. Such an NN contains a “pooling layer” 
that converts a sequence of features into one vector. The pooling 
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FIGURE 6. Illustration of the different speaker embeddings schemes used for TSE, i.e., (a) i-vector, (b) NN-based embeddings, and (c) jointly learned 
embeddings. The orange parts are included only in the training stage. UBM: universal background model.
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layer computes the mean and, optionally, the standard devia-
tion of the sequence of features over the time dimension. The 
pooled vector is then classified into speaker classes and used  
in other loss functions that encourage speaker discrimination. 
For TSE, the speaker embedding is then the vector of the activa-
tion coefficients of one of the last network layers. The most 
common of such NN-based speaker embeddings are d-vectors 
and x-vectors [51]. Many TSE works employ d-vectors [11].

Since NNs are trained for speaker classification and related 
tasks, embeddings are usually highly speaker discriminative. 
Most other sources of variability are discarded, such as the 
channel and content. Another advantage of this class of embed-
dings is that they are usually trained on large corpora with many 
speakers, noises, and other variations, resulting in very robust 
embedding extractors. Trained models are often publicly avail-
able, and the embeddings can be readily used for TSE tasks.

Jointly learned embeddings
NN-based embeddings, such as x-vectors, are designed and 
trained for the task of speaker classification. Although this 
causes them to contain speaker information, it is questionable 
whether the same representation is optimal for TSE tasks. An 
alternative is to train the neural embedding extractor jointly 
with a speech extraction module. The resulting embeddings 
are thus directly optimized for TSE tasks. This approach has 
been used for TSE in several works [10], [31].

The NN performing the speaker embedding extraction takes 
an enrollment utterance C( )

s
a  as input and generally contains a 

pooling layer converting the frame-level features into one vector, 
similar to the embedding extractors discussed in the preceding. 
This NN is trained with the main NN, using a common objective 
function. A second objective function can also be used on the 
embeddings to improve their speaker discriminability [46].

As mentioned previously, the advantage of such embed-
dings is that they are trained directly for TSE and thus col-
lect essential information for this task. On the other hand, the 
pretrained embedding extractors are often trained on larger 
corpora and may be more robust. A possible middle ground 
might take a pretrained embedding extractor and fine-tune it 
jointly with the TSE task. However, this has, to the best of our 
knowledge, not been done yet.

Existing approaches
The first neural TSE methods were developed around 2017. 
One of the first published works, SpeakerBeam [10], explored 
both the single-channel approach, where the target extractor 
was implemented by time-frequency masking, and the multi-
channel approach using beamforming. This work also com-
pared different variants of fusion layers and clue encoders. 
This was followed by such as VoiceFilter [11], which put more 
emphasis on ASR applications using TSE as a front end and 
also investigated streaming variants with minimal latency. A 
slightly modified variant of the task was presented in works 
on speaker inventory [40], where not one but multiple speak-
ers can be enrolled. Such a setting might be suitable for meet-
ing scenarios. Recently, many works, such as SpEx [31], have 

started to use time-domain approaches, following their success 
in BSS [39].

Experiments
An audio clue is a simple way to condition the system for extract-
ing the target speaker. Many works have shown that the speaker 
information extracted from audio clues is sufficient for satis-
factory performance. Demonstrations of many works are avail-
able online such as VoiceFilter [11], at https://google.github.io/ 
speaker-id/publications/VoiceFilter/, and SpeakerBeam 
[10], at https://www.youtube.com/watch?v=7FSHgKip6vI. 
We present here some results to demonstrate the potential of audio 
clue-based approaches. The experiments were done with time- 
domain SpeakerBeam (https://github.com/butspeechfit/speaker 
beam), which uses a convolutional architecture, a multiplica-
tive fusion layer, and a jointly learned clue encoder.

The experiments were done on three different datasets 
(WSJ0-2mix, WHAM!, and WHAMR!) to show the perfor-
mance in different conditions (clean, noisy, and reverberant, 
respectively). We describe these datasets in more detail in the 
“Resources” section. All the experiments were evaluated with 
the SI-SNR metric and measured the improvements over the 
SI-SNR of the observed mixture. More details about the exper-
iments can be found in [52].

Figure 7 compares the TSE results with a cascade system, 
first doing BSS and then independent speaker identification. 
Speaker identification is done either in an oracle way (selecting 
the output closest to the reference) or with x-vectors (extracting 
the x-vectors from all the outputs and the enrollment utteranc-
es and selecting the output with the smallest cosine distance as 
the target). The BSS system uses the same convolutional archi-
tecture as TSE, differing only in that it does not have a clue 
encoder and that the output layer is twice larger, as it outputs 
two separated speech signals. The direct TSE scheme outper-
formed the cascade system, especially in more difficult condi-
tions, such as WHAMR!. This difference reflects a couple of 
causes: 1) the TSE model is directly optimized for the TSE task 
and does not spend any capacity on extracting other speakers, 
and 2) the TSE model has additional speaker information.

Figure 8 gives an example of spectrograms obtained using 
TSE on a recording of two speakers from the WHAMR! 
database, including noise and reverberation. TSE correctly 
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identifies the target speaker and removes all the interference, 
including the second speaker, noise, and reverberation.

Limitations and outlook
Using TSE systems conditioned on audio clues is particularly 
practical due to the simplicity of obtaining the clues; i.e., no 
additional hardware is needed, such as cameras and multiple 
microphones. Considering the good performance demonstrat-
ed in the literature, these systems are widely applicable. Today, 
the methods are rapidly evolving and achieving increasingly 
higher accuracy.

The main challenge in audio clue-based systems is cor-
rect identification of the target speaker. The speech signal of 
the same speaker might have highly different characteristics 
in different conditions, due to such factors as emotional state, 
channel effects, and the Lombard effect. TSE systems must be 
robust enough to such intraspeaker variability. On the other 
hand, different speakers might have very similar voices, lead-
ing to erroneous identification if the TSE system lacks suffi-
cient accuracy.

Resolving both issues requires precise speaker modeling. 
In this regard, the TSE methods may draw inspiration from 
the latest advances in the speaker verification field, including 
advanced model architectures, realistic datasets with a huge 
number of speakers for training, and using pretrained features 
from self-supervised models.

Visual/multimodal clue-based TSE
Visual clue-based TSE assumes that a video camera captures 
the face of the target speaker who is talking in the mixture [7], 
[8]. Using visual clues is motivated by psychoacoustic studies 
(see the references in a previous work [6]) that revealed that 
humans look at lip movements to understand speech better. 
Similarly, the visual clues of TSE systems derive hints about 
the state of the target speech from the lip movements, such as 
whether the target speaker is speaking or silent as well as more 
refined information about the phoneme being uttered.

A visual clue, which presents different characteristics than 
audio clues because it captures information from another modal-
ity, is time synchronized with the target speech in the mixture 
without being corrupted by the interference speakers. Therefore, 
a visual clue-based TSE can better handle mixtures of speakers 
with similar voices, such as same-gender mixtures, than audio 
clue-based systems because the extraction process is not based 
on the speaker’s voice characteristics. Some works can even per-
form extraction from a mixture of the same speaker’s speech [8]. 
Another potential advantage is that the users may not need to 
pre-enroll their voice. Video signals are also readily available for 
many applications, such as video conferencing.

Figure 9 provides a diagram of a visual TSE system that fol-
lows the same structure as the general TSE framework intro-
duced in the “General Framework for Neural TSE” section. 
Only the visual clue encoder part is specific to the task. We 
describe it in more detail in the following and then introduce 
a multimodal clue extension. We conclude this section with 
some experimental results and discussions.

Visual clue encoder
The visual clue encoder computes from the video signal a rep-
resentation that allows the speech extraction module to identify 
and extract the target speech in the mixture. This processing 
involves the steps described in the following:
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where E R( )
s
v D NEmb

! #  represents the sequence of the vi-
sual embedding vectors, C( )

s
v  is the video signal obtained 

after preprocessing, VFE( · ) is the visual feature extraction 
module, ·,NN v clue-i^ h is an NN with parameters ,v-cluei  and  
Upsample( · ) represents the upsampling operation. The lat-
ter upsampling step is required because the sampling rates 
of the audio and video devices are usually different. Upsam-
pling matches the number of frames of the mixture and visual  
clue encoders.

Preprocessing
First, the video signal captured by the camera requires prepro-
cessing to isolate the face of the target speaker. Depending on 
the application, this may require detecting and tracking the tar-
get speaker’s face and cropping the video. These preprocess-
ing steps can be performed using previously well-established 
video processing algorithms [6].

Visual feature extraction
Similar to an audio clue-based TSE, the visual clue encoder 
can directly extract embeddings from raw video data and vi-
sual features. With the first option, the raw video is processed 
with a CNN whose parameters are jointly learned with the 
speech extraction module to enable direct optimization of the 
features for the extraction task without any loss of informa-
tion. However, since the video signals are high-dimensional 
data, achieving joint optimization can be complex. This ap-
proach has been used successfully with speaker-close con-
ditions [53]. Extending it to speaker-open conditions might 
require a considerable amount of data and careful design of 
the training loss by using, e.g., multitask training to help the 
visual encoder capture relevant information.

Most visual TSE works use instead a visual feature extrac-
tor pretrained on another task to reduce the dimensional-
ity of the data. Such feature extractors can leverage a large 
amount of image and video data (that do not need to be 
speech mixtures) to learn representation robust to varia-
tions, such as resolution, luminosity, and head orientation. 
The first option is to use facial landmark points as features. 
Facial landmarks are the key points on a face that indicate 
the mouth, eyes, and nose positions and offer a very low-
dimension representation of a face, which is interpretable. 
Moreover, face landmarks can be easily computed with effi-
cient off-the-shelf algorithms [32].

The other option is to use neural embeddings derived from 
an image/video processing NN trained on a different task, 
which was proposed in three concurrent works [7], [8], [9]. 
Ephrat et al. [8] used visual embeddings obtained from an 
intermediate layer of a face recognition system called FaceNet. 
This face recognition system is trained so that embeddings 
derived from photographs of the same person are close and 
embeddings from different persons are far from one another. 
It thus requires only a corpus of still images with person iden-
tity labels for training the system. However, the embeddings do 
not capture the lip movement dynamics and are not explicitly 
related to the acoustic content.

Alternatively, Afouras et al. [7] proposed using embed-
dings obtained from a network trained to perform lipreading, 
i.e., where a network is trained to estimate the phoneme or 
uttered word from the video of the speaker’s lips. The resulting 
embeddings are thus directly related to the acoustic content. 
However, the training requires video with the associated pho-
neme and word transcriptions, which are more demanding and 
costly to obtain.

The third option, introduced by Owens et al. [9], exploits 
embeddings derived from an NN trained to predict whether 
the audio and visual tracks of a video are synchronized. This 
approach enables self-supervised training, where the training 
data are simply created by randomly shifting the audio track 
by a few seconds. The embeddings capture information on 
the association between the lip motions and the timing of the 
sounds in the audio. All three options [7], [8], [9] can success-
fully perform a visual TSE.

Transformation and upsampling
Except with joint training approaches, the visual features are 
(pre)trained on different tasks and thus do not provide a repre-
sentation optimal for TSE. Besides, since some of the visual 
features are extracted from the individual frames of a video, 
the dynamics of lip movements are not captured. Therefore, 
the visual features are further transformed with an NN, which 
is jointly trained with the speech extraction module. The NN, 
which allows learning a representation optimal for TSE, can be 
implemented with LSTM and convolutional layers across the 
time dimension to model the time series of the visual features, 
enabling the lip movement dynamics to be captured. Finally, 
the visual embeddings are upsampled to match the sampling 
rate of audio features .Zy

Audiovisual clue-based TSE
Audio clue- and visual clue-based TSE systems have comple-
mentary properties. An audio clue-based TSE is not affected 
by speaker movements and visual occlusions. In contrast, a 
visual clue-based TSE is less affected by the voice character-
istics of the speakers in the mixture. By combining these ap-
proaches, we can build TSE systems that exploit the strengths 
of both clues for improving the robustness to various condi-
tions [33], [36].

Figure 10 is a diagram of an audiovisual TSE system, which 
assumes access to the prerecorded enrollment of the target 
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FIGURE 10. The audiovisual clue-based TSE system.
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speaker to provide an audio clue and a video camera for a 
visual clue. The system uses the audio and visual clue encod-
ers described in the “Audio Clue Encoder” and “Visual Clue 
Encoder” sections and combines these clues into an audiovisual 
embedding, which is given to the speech extraction module. 
Audiovisual embeddings can be simply the concatenation 
[35] or the summation of the audio and visual embeddings, or 
they can be obtained as a weighted sum [33], [34], where the 
weights can vary depending on the reliability of each clue. The 
weighted sum approach can be implemented with an attention 
layer widely used in machine learning, which enables dynamic 
weighting of the contribution of each clue.

Experimental results and discussion
Several visual TSE systems have been proposed, which dif-
fer mostly by the type of visual features used and the network 
configuration. These systems have demonstrated astonishing 
results, which can be attested by the demonstrations available 
online, e.g., for [9], https://andrewowens.com/multisensory;  
for [8], https://looking-to-listen.github.io; for [7], https://
www.robots.ox.ac.uk/~vgg/demo/theconversation; and for 
[34], http://www.kecl.ntt.co.jp/icl/signal/member/demo/audio 
_visual_speakerbeam.html. Here, we briefly describe experi-
ments using the audio, visual, and audiovisual time-domain 
SpeakerBeam systems [34], which use a similar configuration 
as the system in the “Audio-based TSE” section. The speech 
extraction module employs a stack of time-convolutional 
blocks and a multiplicative fusion layer. The audio clue encod-
er consists of the jointly learned embeddings described in the 
“Jointly Learned Embeddings” section. The visual clue encod-

er uses visual features derived from face recognition, similar 
to a previous work [8]. The audiovisual system combines the 
visual and audio clues with an attention layer [34].

The experiments used mixtures of utterances from the 
LRS3-TED corpus (https://www.robots.ox.ac.uk/~vgg/data/
lip_reading/lrs3.html), which consists of single-speaker utter-
ances with associated videos. We analyzed the behavior under 
various conditions by looking at results from same and dif-
ferent gender mixtures and two examples of clue corruptions 
(enrollment corrupted with white noise at an SNR of 0 dB and 
video with a mask on the speaker’s mouth). The details of the 
experimental setup are available in [34].

Figure 11 compares the extraction performance mea-
sured in terms of the SDR improvement for audio, visu-
al, and audiovisual TSE under various mixture and clue 
conditions. We confirmed that a visual clue-based TSE 
is less sensitive to the characteristics of the speakers in 
the mixture since the performance gap between different- 
and same-gender mixtures is smaller than with an audio 
clue-based TSE. When using a single clue, performance 
can be degraded when this clue is corrupted. However, the 
audiovisual system that exploits both clues can achieve 
superior extraction performance and is more robust to 
clue corruption.

Discussions and outlook
Visual clue-based TSE approaches offer an alternative to audio 
clue-based ones when a camera is available. The idea of using 
visual clues for TSE is not new [4], [5], although recent neu-
ral systems have achieved an impressive level of performance. 
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This is probably because NNs can effectively model the rela-
tionship between the different modalities learned from a large 
amount of training data.

Issues and research opportunities remain with the cur-
rent visual clue-based TSE systems. First, most approaches 
do not consider the speaker tracking problem and assume 
that the audio and video signals are synchronized. These 
aspects must be considered when designing and evaluating 
future TSE systems. Second, video processing involves high 
computational costs, and more research is needed to develop 
efficient online systems.

Spatial clue-based TSE
When using a microphone array to record a signal, spatial in-
formation can be used to discriminate among sources. In par-
ticular, access to multichannel recordings opens the way to ex-
tract target speakers based on their location, i.e., using spatial 
clues (as indicated in Figure 1). This section explains how such 
spatial clues can be obtained and used in TSE systems. While 
enhancing speakers from a given direction has a long research 
history [2], we focus here on neural methods that follow the 
scope of our overview article.

Note that multichannel signals can also be utilized in the 
extraction process using beamforming. Such an extraction 
process can be used in systems with any type of clue, requir-
ing only that the mixed speech be recorded with multiple 
microphones. This beamforming process was reviewed in 
the “Integration With Microphone Array Processing” sec-
tion. In this section, we focus specifically on the processing 
of spatial clues.

Obtaining spatial clues
In some situations, the target speaker’s location is approxi-
mately known in advance. For example, for an in-car ASR, 
the driver’s position is limited to a certain region in the car. In 
other scenarios, we might have access to a multichannel enroll-
ment utterance of the speaker recorded in the same position 
as the final mixed speech. In such a case, audio source local-
ization methods can be applied. Conventionally, this can be 
done by methods based on generalized cross correlation and 

steered-response power, but recently, deep learning methods 
have also shown success in this task. An alternative is to skip 
the explicit estimation of the location and directly extract fea-
tures in which the location is encoded when a multichannel 
enrollment is available. We detail this approach further in the 
following section.

Spatial clues can also be obtained from a video by using 
face detection and tracking systems. A previous work [36] 
demonstrated this possibility with a 180º wide-angle camera 
positioned parallel to a linear microphone array. By identifying 
the target speaker in the video, the azimuth with respect to the 
microphone array was roughly approximated. Depth cameras 
can also be used to estimate not only the azimuth but also the 
elevation and distance of the speaker.

Spatial clue encoder
Figure 12(a) describes the overall structure and the usage of a 
spatial clue encoder, which usually consists of two parts: the 
extraction of directional features and an NN postprocessing 
of them. Two possible forms of spatial clues are dominant in 
the literature: the angle of the target speaker with respect to 
the microphone array and a multichannel enrollment utterance 
recorded in the target location. Both can be encoded into di-
rectional features.

When the spatial clue is the DOA, the most commonly used 
directional features are the angle features, which are computed 
as the cosine of the difference between the IPD and the target 
phase difference (TPD):
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where M is a set of pairs of microphones used to compute 
the feature, Fs  is the sampling frequency, sz  is the target di-
rection, c is the sound’s velocity, and ,m m1 2D  is the distance 
from microphone m1 to microphone m2. An example of angle 
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features is available in Figure 12(b). For time-frequency bins 
dominated by the source from direction ,sz  the value of the 
angle feature should be close to one or negative one. Other 
directional features have been proposed that exploit a grid of 
fixed beamformers. A directional power ratio measures the ra-
tio between the power of the response of a beamformer steered 
into the target direction and the power of the beamformer re-
sponses steered into all the directions in the grid. In a simi-
lar fashion, a directional SNR can also be computed, which 
compares the response of a beamformer in the target direction 
with the response of a beamformer in the direction with the 
strongest interference.

If the spatial clue consists of a multichannel enrollment 
utterance, the directional feature can be formed as a vector of 
IPDs computed from the enrollment. Alternatively, the DOA 
can be estimated from the enrollment, and the spatial features 
derived from it can be used.

Note that when using a spatial clue to determine the tar-
get speaker, the multichannel input of the speech extraction 
module must also be used. This enables the identification of 
the speaker coming from the target location in the mixture. 
Furthermore, a target extractor is often implemented as beam-
forming, as explained in the “Integration With Microphone 
Array Processing” section.

Combination with other clues
Although a spatial clue is very informative and generally can 
lead the TSE system to a correct extraction of the target, it does 
fail in some instances. Estimation errors of the DOA are harm-
ful to proper extraction. Furthermore, if the spatial separation 
of the speakers with respect to the microphone array is not sig-
nificant enough, the spatial clue may not discriminate between 
them. Combining a spatial clue with audio and visual clues is 
an option to combat such failure cases.

Experimental results
We next report the results from an experiment with spatial 
clues [36] that compared the effectiveness of using audio, vi-
sual, and spatial clues. The audio clue encoder was trained 
jointly with the extraction module, and the visual encoder 
was a pretrained lipreading network. The target speaker’s di-

rection was encoded in the angle feature. The spatial and vi-
sual embeddings were fused with the extraction network by  
concatenation and the audio embedding with a factorized layer. 
The extraction module employed an NN consisting of temporal 
convolutional layers.

The experiments were performed on a Mandarin audiovisu-
al dataset containing mixtures of two and three speakers. The 
results in Figure 13 were divided into several conditions based 
on the angle separation between the closest speakers. The spa-
tial clue is very effective, although the performance declines 
when speakers are near one another ( ).15c1  A combination 
with other modalities outperformed any individual type of 
clue in all the conditions. Demo samples of [36] can be found 
online; https://yongxuustc.github.io/grnnbf.

Discussion
Using spatial clues is a powerful way of conditioning a TSE 
system to extract the target speaker. It relies on the availability 
of signals from a microphone array and a way to determine 
the location of the target speaker. Unfortunately, these restric-
tions limit the applications to some extent. Neural TSE meth-
ods with spatial clues follow a long history of research on the 
topic, such as beamforming techniques, and extend them with 
nonlinear processing. This approach unifies the methods with 
those using other clues and allows a straightforward combina-
tion of different clues into one system. Such combinations can 
alleviate the shortcomings of spatial clues, including the fail-
ures when the speakers are located in the same direction from 
the point of view of the microphones.

In most current neural TSE works, the target speaker’s loca-
tion is assumed to be fixed. Although the methods should be 
easily extended to a dynamic case, investigations of such set-
tings remain relatively rare [24].

Extension to other tasks
The ideas of TSE can be applied to other speech processing 
tasks, such as ASR and diarization.

TS-ASR
An important application of TSE is TS-ASR, where the goal 
is to transcribe the target speaker’s speech and ignore all the 
interference speakers. The TSE approaches we described 
can be naturally used as a front end to an ASR system to 
achieve TS-ASR. Such a cascade combination allows for a 
modular system, which offers ease of development and in-
terpretability. However, the TSE system is often optimized 
with a signal loss, as in (16). Such a TSE system inevitably 
introduces artifacts caused by the remaining interferences, 
oversuppression, and other nonlinear processing distortions. 
These artifacts limit the expected performance improvement 
from a TSE front end.

One approach to mitigate the effect of such artifacts is to 
optimize the TSE front end with an ASR criterion [10]. The 
TSE front end and the ASR back end are NNs and can be inter-
connected with differentiable operations, such as beamform-
ing and feature extraction. Therefore, a cascade system can be 

FIGURE 13. The SI-SNR improvement of TSE with audio, visual, and 
spatial clues in four conditions based on the angle separation among 
speakers [36].

0

2

4

6

8

10

12

<15° 15–45° 45–90° >90°S
I-

S
N

R
 Im

pr
ov

em
en

t (
dB

)

Audio Visual Spatial Combined

Authorized licensed use limited to: Brno University of Technology. Downloaded on August 17,2023 at 13:04:39 UTC from IEEE Xplore.  Restrictions apply. 

https://yongxuustc.github.io/grnnbf


25IEEE SIGNAL PROCESSING MAGAZINE   |   May 2023   |

represented with a single computational graph, allowing all 
parameters to be jointly trained. Such joint training can sig-
nificantly improve the TS-ASR performance.

Another approach inserts a fusion layer into an ASR system 
[26], [45] to directly perform clue conditioning. These integrat-
ed TS-ASR systems avoid any explicit signal extraction step, 
a decision that reduces the computational cost, although such 
systems may be less interpretable than cascade systems.

TS-ASR can use the audio clues provided by prerecorded 
enrollment utterances [10], [26], [45] and from a keyword 
(anchor) for a smart device scenario [54], for example. Some 
works have also exploited visual clues, which can be used for the 
extraction process and to implement an audiovisual ASR back 
end, since lipreading also improves ASR performance [55].

TS-VAD and diarization
The problem of speech diarization consists of detecting who 
spoke when in a multispeaker recording. This technology is 
essential for achieving, e.g., meeting recognition and analysis 
systems that can transcribe a discussion among multiple par-
ticipants. Several works have explored using speaker clues to 
perform this task [27], [28].

For example, a personalized VAD [27] exploits a speaker 
embedding vector derived from an enrollment utterance of the 
target speaker to predict his or her activity, i.e., whether he or 
she is speaking at a given time. In principle, this can be done 
with a system such as that presented in the “General Frame-
work for Neural TSE” section, where the output layer per-
forms the binary classification of the speaker activity instead 
of estimating the target speech signal. Similar systems have 
also been proposed using visual clues, called audiovisual VAD 
[56]. Predicting the target speaker’s activity is arguably a more 
straightforward task than estimating his or her speech signal. 
Consequently, personalized VAD can use simpler network 
architectures, leading to more lightweight processing.

The preceding personalized VAD systems have been ex -
tended to simultaneously output the activity of multiple target 
speakers, which was called TS-VAD [28]. TS-VAD has been 
used in the systems achieving top performance on evaluation 
campaigns such as CHiME6 and DIHARD III. (The results of 
CHiME 6 challenge can be found at: https://chimechallenge.
github.io/chime6/results.html, the results of DIHARD III can 
be found at: https://dihardchallenge.github.io/dihard3/results.)

Remaining issues and outlook
Research toward computational selective hearing has been 
a long endeavor. Recent developments in TSE have enabled 
identifying and extracting a target speaker’s voice in a mix-
ture by exploiting audio, visual, and spatial clues, which is one 
step closer to solving the cocktail party problem. Progress in 
speech processing (speech enhancement and speaker recogni-
tion) and image processing (face recognition and lipreading), 
combined with deep learning technologies to learn models that 
can effectively condition processing on auxiliary clues, trig-
gered the progress in the TSE field. Some of the works we pre-
sented have achieved levels of performance that seemed out 

of reach just a few years ago and are already being deployed 
in products. See, for example, the following blog, which de-
tails the effort for deploying a visual clue-based TSE system 
for on-device processing: https://ai.googleblog.com/2020/10/
audiovisual-speech-enhancement-in.html. Despite substantial 
achievements, many opportunities remain for further research, 
some of which we list in the following.

Deployment of TSE systems
Most of the systems we described operate offline and are com-
putationally expensive. They are also evaluated under con-
trolled (mostly simulated mixture) settings. Deploying such 
systems introduces engineering and research challenges to re-
duce computational costs while maintaining high performance 
under less-controlled recording conditions. We next discuss 
some of these aspects.

Inactive target speaker
Most TSE systems have been evaluated assuming that the 
target speaker is actively speaking in the mixture. In prac-
tice, we may not know beforehand whether the target speak-
er will be active. We expect that a TSE system can output no 
signal when the target speaker is inactive, which may not ac-
tually be the case with most current systems that are not ex-
plicitly trained to do so. The inactive target speaker problem 
is specific to TSE. The type of clue used may also greatly 
impact the difficulty of tackling this problem. For instance, 
visual VAD [5] might alleviate this issue. However, it is more 
challenging with audio clues [57], and further research may 
be required.

Training and evaluation criteria
Most TSE systems are trained and evaluated using such signal-
level metrics as the SNR and SDR. Although these metrics 
are indicative of the extraction performance, their use presents 
two issues.

First, they may not always be correlated with human 
perception and intelligibility and with ASR performance. 
This issue is not specific to TSE; it is common to BSS and 
noise reduction methods. For ASR, we can train a system 
end to end, as discussed in the “TS-ASR” section. When 
targeting applications for human listeners, the problem can 
be partly addressed using other metrics for training and 
evaluation that correlate better with human perception, 
such as short-time objective intelligibility and perceptual 
evaluation of speech quality [6]. However, controlled lis-
tening tests must be conducted to confirm the impact of a 
TSE on human listeners [6].

Second, unlike BSS and noise reduction, a TSE system 
needs to identify the target speech, implying other sources 
of errors. Indeed, failing to identify the target may lead to 
incorrectly estimating an interference speaker and inaccu-
rately outputting the mixture. Although these errors directly 
impact the SDR scores, it would be fruitful to agree on the 
evaluation metrics that separate extraction and identification 
performance to better reveal the behavior of TSE systems. 
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Signal-level metrics might not satisfactorily represent the 
extraction performance for inactive speaker cases. A better 
understanding of failures might help develop TSE systems 
that can recognize when they cannot identify the target 
speech, which is appealing for practical applications. Conse-
quently, developing better training and evaluation criteria is a 
critical research direction.

Robustness to recording conditions
Training neural TSE systems requires simulated mixtures, as 
discussed in the “Training a TSE System” section. Applying 
these systems to real conditions (multispeaker mixtures re-
corded directly with a microphone) requires that the training 
data match the application scenario relatively well. For exam-
ple, the type of noise and reverberation may vary significantly 
depending on where a system is deployed. This raises ques-
tions about the robustness of TSE systems to various record-
ing conditions.

Neural TSE systems trained with a large amount of sim-
ulated data have been shown to generalize to real recording 
conditions [8]. However, exploiting real recordings where 
no reference target speech signal is available could further 
improve performance. Real recordings might augment the 
training data and be used to adapt a TSE system to a new envi-
ronment. The issue is defining unsupervised training losses 
correlated with the extraction performance of the target speech 
without requiring access to the reference target signal.

Another interesting research direction is combining neural 
TSE systems, which are powerful under matched conditions, 
with such generative-based approaches as IVE [12], which are 
adaptive to recording conditions.

Lightweight and low-latency systems
Research on lightweight and low-latency TSE systems is gain-
ing momentum, as the use of teleconferencing systems in noisy 
environments has risen in response to the COVID-19 pandemic. 
Other important use cases for TSE are hearing aids and hear-
ables, both of which impose very severe constraints in terms of 
computation costs and latency. The recent DNS (https://www.
microsoft.com/en-us/research/academic-program/deep-noise 
-suppression-challenge-icassp-2022/) and Clarity (https://clarity 
challenge.github.io/clarity_CC_doc/) challenges that target 
teleconferencing and hearing aid application scenarios include 
tracks where target speaker clues (enrollment data) can be ex-
ploited. This demonstrates the growing interest in practical 
solutions for TSE.

Since TSE is related to BSS and noise reduction, the devel-
opment of online and low-latency TSE systems can be inspired 
from the progress of BSS/noise reduction in that direction. 
However, TSE must also identify the target speech, which may 
need specific solutions that exploit the long context of the mix-
ture to reliably and efficiently capture a speaker’s identity.

Spatial rendering
For applications of TSE to hearing aids and hearables, sounds 
must be localized in space after the TSE processing. Therefore, 

a TSE system must not only extract the target speech but also 
estimate its direction to allow rendering it so that a listener 
feels the correct direction of the source.

Self-supervised and cross-modal learning
A TSE system identifies the target speech in a mixture based 
on the intermediate representation of the mixture and the clue. 
Naturally, TSE benefits from better intermediate representations. 
For example, speech models learned with self-supervised 
learning criteria have gained attention as a way to obtain ro-
bust speech representations. They have shown potential for 
pretraining many speech processing downstream tasks, such 
as ASR, speaker identification, and BSS. Such self-supervised 
models could also reveal advantages for TSE since they could 
improve robustness by allowing efficient pretraining on vari-
ous acoustic conditions. Moreover, for audio-based TSE, using 
the same self-supervised pretrained model for the audio clue 
encoder and the speech extraction module will help to learn the 
common embedding space between the enrollment and speech 
signals in the mixture. Similarly, the progress in cross-modal 
learning, which aims to learn the joint representation of data 
across modalities, could benefit such multimodal approaches 
as visual clue-based TSE.

Exploring other clues
We presented three types of clues that have been widely used 
for TSE. However, other clues can also be considered. For ex-
ample, recent works have explored other types of spatial clues, 
such as distance [58]. Moreover, humans do not rely only on 
physical clues to perform selective hearing. We also use more 
abstract clues, such as semantic ones. Indeed, we can rapidly 
focus our attention on a speaker when we hear our name or a 
topic we are interested in. Reproducing a similar mechanism 
would require TSE systems that operate with semantic clues, 
which introduces novel challenges concerning how to repre-
sent semantic information and exploit it within a TSE system. 
Some works have started to explore this direction, such as con-
ditioning on languages [59] and more abstract concepts [60].

Other interesting clues consist of signals that measure a lis-
tener’s brain activity to guide the extraction process. Indeed, 
the electroencephalogram (EEG) signal of a listener focus-
ing on a speaker correlates with the envelope of that speak-
er’s speech signal. Ceolini et al. identified the possibility of 
using EEGs as clues for TSE with a system similar to the one 
described in the “General Framework for Neural TSE” sec-
tion [61]. An EEG-guided TSE might open the door for futur-
istic hearing aids controlled by the user’s brain activity, which 
might automatically emphasize the speaker a user wants to 
hear. However, research is still needed because develop-
ing a system that requires marginal tuning to the listener is 
especially challenging. Moreover, collecting a large amount 
of training data is very complicated since it is more difficult 
to control the quality of such clues. Compared to audio and 
visual TSE clues, EEG signals are very noisy and affected by 
changes in the attention of the listener, body movements, and 
other factors.
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Beyond speech
Human selective listening abilities go beyond speech signals. 
For example, we can focus on listening to the part of an instru-
ment in an orchestra and switch our attention to a siren or a 
barking dog. In this article, we focused on TSE, but similar 
extraction problems have also been explored for other audio 
processing tasks. For example, much research has been per-
formed on extracting the track of an instrument in a piece of 
music conditioned on, e.g., the type of instrument [62], video 
of the musician playing [63], and the EEG signal of the listener 
[64]. These approaches may be important to realize, e.g., au-
diovisual music analysis [65].

Recently, the problem was extended to the extraction of 
arbitrary sounds from a mixture [66], [67], e.g., extracting the 
sound of a siren or a klaxon from a recording of a mixture of 
street sounds. We can use such systems, as introduced in the 
“General Framework for Neural TSE” section, to tackle these 
problems, where the clue can be a class label indicating the 
type of target sound [66], the enrollment audio of a similar 
target sound [67], a video of the sound source [9], and a text 
description of the target sound [68]. Target sound extraction 
may become an important technology to design, e.g., hearables 
and hearing aids that could filter out nuisances and empha-
size important sounds in our surroundings as well as for audio 
visual scene analysis [9].

Psychoacoustic studies suggest that humans process speech 
and music partly by using shared auditory mechanisms and 
that exposure to music can lead to better discrimination of 
speech sounds [69]. It would be interesting to explore whether, 
similar to humans, TSE systems could benefit from exposure 
to other acoustic signals by training a system to extract target 
speech, music, and arbitrary sounds.

Resources
We conclude by providing pointers to selected datasets and 
toolkits available for those motivated to experiment with TSE. 
TSE works mostly use datasets designed for BSS. These 

datasets consist generally of artificial mixtures generated 
from the isolated signals of the individual speakers and back-
ground. This allows evaluation of the performance by com-
paring the estimated signals to the original references. Ad-
ditionally, TSE methods also require a clue, i.e., an enrollment 
utterance for the target speaker or video signal. We can obtain 
enrollment utterances by choosing a random utterance of the 
target speaker from the same database, provided that the utter-
ance is different from the one in the mixture. For a video clue, 
it requires using an audiovisual dataset. The top of Table 3 
lists some of the most commonly used datasets for audio and 
visual TSE.

Several implementations of TSE systems are openly avail-
able and listed in the lower part of Table 3. Although there are 
no public implementations for some of the visual TSE systems, 
they can be reimplemented following the audio TSE toolkits 
and using openly available visual feature extractors, such as 
FaceNet, which was used in some previous works [8], [33], [34].
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Table 3. Some datasets and toolkits.

Name Description Link

Da
ta

se
t

WSJ0-mix Mixtures of two or three speakers https://www.merl.com/demos/deep-clustering
WHAM!,WHAMR! Noisy and reverberant versions of WSJ0-mix https://wham.whisper.ai
LibriMix Larger dataset of mixtures of two or three speakers https://github.com/JorisCos/LibriMix
LibriCSS Meeting-like mixtures recorded in a room https://github.com/chenzhuo1011/libri_css
MC-WSJ0-mix Spatialized version of WSJ0-2mix https://www.merl.com/demos/deep-clustering
SMS-WSJ Multichannel corpus based on WSJ https://github.com/fgnt/sms_wsj
LRS Audiovisual corpus from TED and BBC videos https://www.robots.ox.ac.uk/~vgg/data/lip_reading
AVSpeech Very large audiovisual corpus from YouTube videos https://looking-to-listen.github.io/avspeech

To
ol

s

SpeakerBeam Time-domain audio-based TSE system https://github.com/butspeechfit/speakerbeam
SpEx+ Time-domain audio-based TSE system [31] https://github.com/xuchenglin28/speaker_extraction_SpEx
VoiceFilter Time-domain audio-based TSE system (unofficial) [11] https://github.com/mindslab-ai/voicefilter
Multisensory Visual clue-based TSE [9] https://github.com/andrewowens/multisensory
Audiovisual speech 
enhancement 

Face landmark-based visual clue-based TSE [32] https://github.com/dr-pato/audio_visual_speech_enhancement

FaceNet Visual feature extractor used in [8], [33], and [34] https://github.com/davidsandberg/facenet
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