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Abstract
Combining end-to-end neural speaker diarization (EEND) with
vector clustering (VC), known as EEND-VC, has gained inter-
est for leveraging the strengths of both methods. EEND-VC
estimates activities and speaker embeddings for all speakers
within an audio chunk and uses VC to associate these activi-
ties with speaker identities across different chunks. EEND-VC
generates thus multiple streams of embeddings, one for each
speaker in a chunk. We can cluster these embeddings using con-
strained agglomerative hierarchical clustering (cAHC), ensur-
ing embeddings from the same chunk belong to different clus-
ters. This paper introduces an alternative clustering approach, a
multi-stream extension of the successful Bayesian HMM clus-
tering of x-vectors (VBx), called MS-VBx. Experiments on
three datasets demonstrate that MS-VBx outperforms cAHC in
diarization and speaker counting performance.
Index Terms: speaker diarization, end-to-end, VBx, clustering

1. Introduction
Diarization consists of determining who speaks when in a

multi-talker recording. It plays an essential role in the process-
ing of conversations. There are several approaches to tackle the
diarization problem, such as vector clustering (VC) [1], end-to-
end diarization (EEND) [2, 3] and target speaker voice activity
detection (TS-VAD) [4]. Recently, the combination of the first
two, i.e., EEND combined with VC (EEND-VC) has received
increased interest since it offers a principled way of getting the
best of both frameworks achieving high performance on several
tasks [5–7]. The term EEND-VC was introduced in [5], but here
it refers to a larger class of approaches that combine EEND and
VC including, e.g., [6]. This paper discusses a novel clustering
approach for EEND-VC.

VC-based diarization approaches first compute speaker em-
bedding vectors for short segments of a recording and then clus-
ter these embeddings to assign speaker labels to each segment.
Classical clustering algorithms such as K-means or agglomera-
tive hierarchical clustering (AHC) can be used, but more power-
ful clustering schemes have been proposed, such as variational
Bayesian HMM clustering of x-vector sequences (VBx) [8, 9],
which has been widely used in diarization challenges [10–12].
VC approaches can work with an arbitrarily large number of
speakers in a recording. However, they assume no speech over-
lap in a segment, which does not hold for many natural conver-
sations.

EEND [2, 3, 13] is an alternative approach, which uses a
neural network to directly output the speech activity for each

The work was partly supported by Czech National Science Foun-
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Figure 1: Schematic diagram of the hidden Markov model
(HMM) used for a) the conventional VBx and b) the proposed
multi-stream extension (C = 2). “A,” “B,” and “C” represent
speakers and ϕ an inactive speaker. Ploop is the loop probabil-
ity. For simplicity, we omitted the states “B A,” “C A,” “C B”.

speaker in a recording even for overlapping regions. EEND can
thus handle overlapping speech, making it a competitive alter-
native to VC. However, it is more challenging to generalize to
an arbitrarily large number of speakers [3].

EEND-VC has been proposed to combine the strength of
both frameworks [5, 6]. It first performs EEND on speech
chunks1 using a modified network architecture [5, 6], which es-
timates the speaker activities and speaker embeddings. Then,
it performs VC on the estimated speaker embeddings to stitch
together the speaker activities of the same speaker across differ-
ent chunks. EEND-VC can thus handle overlapping speech as
EEND and an arbitrary number of speakers as VC.

Compared to conventional VC, with EEND-VC, each
chunk can have multiple speaker embeddings. Therefore, it
requires clustering multi-stream of speaker embeddings with a
constraint that the embeddings from the same chunk should not
belong to the same cluster [14]. This has been ensured by us-
ing constrained variants of well-known clustering algorithms,
such as constrained variants of K-means [15,16] or constrained
agglomerative hierarchical clustering (cAHC) [17]. However,
variational Bayesian HMM clustering of x-vector sequences
(VBx) [8, 9] has shown better performance than K-means or
AHC in diarization and has been widely used in recent chal-
lenges [10–12]. In this paper, we investigate the use of VBx for
clustering the speaker embeddings of EEND-VC by developing
a multi-stream extension of VBx.

VBx is a clustering algorithm based on a Bayesian HMM

1Typically, the chunks of EEND-VC are speech segments longer
than those used by VC.
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Figure 2: Schematic diagram of EEND-VC.

where states are associated with the speakers and transitions be-
tween states represent speaker turns, as shown in Fig. 1-a). VBx
models the speaker distributions with Gaussians and sets a prior
on the parameters of the Gaussians derived from a probabilistic
linear discriminant analysis (PLDA) model trained on a large
set of speaker embeddings. The parameters of the HMM, the
speaker models, and the best assignment of states given a se-
quence of embeddings are estimated directly on each recording
using the variational Bayes (VB) inference. Compared to other
clustering approaches, VBx allows modeling the transitions be-
tween speakers and offers a principled way of estimating the
number of speakers through the VB inference [18]. The formu-
lation of VBx assumes a single speaker for each segment and
thus for each embedding.

We propose to generalize the VBx algorithm to handle
the multi-stream embeddings of EEND-VC, where each HMM
state corresponds to a single or multiple (overlapping) speak-
ers as shown in Fig. 1-b). We call this extension multi-stream
VBx (MS-VBx). A naive implementation would exponentially
increase the number of parameters of the model and also make
the allocation of the speakers difficult. Therefore, we propose
to tie together parameters of the HMM states that correspond to
the same speaker. This generalization of VBx allows using the
state-of-the-art VC approach for EEND-VC.

We show that the proposed MS-VBx naturally implements
the constraint required by EEND-VC. Besides, it outperforms
cAHC in experiments on the CALLHOME and DIHARD II and
III datasets in terms of Diarization error rate (DER) and speaker
counting errors.

2. Overview of EEND-VC
Figure 2 shows an EEND-VC system. St are the speech fea-
tures for the chunk t = 1, . . . , T . EEND-VC consists of a neu-
ral network that estimates for each chunk t, the speech activities
at = [a1

t , . . . ,a
C
t ] ∈ [0, 1]N×C and speaker embeddings xt =

[x1
t , . . . ,x

C
t ] ∈ RD×C . Here, N represents the number of time

frames per chunk, D the dimension of the speaker embedding
vectors, and C the number of output streams, which can be a
fixed maximum number of active speakers in a chunk [5] or an
estimate of the number of active speakers for each chunk [6].
ac
t represents the speech activity of the speaker associated with

the output stream c, and xc
t is the speaker embedding associated

with that speaker.
EEND-VC processes each chunk independently. Since the

total number of speakers in a recording can exceed the number
of speakers in a chunk, and the system can output speakers in an

arbitrary order, there is speaker ambiguity at the output of the
EEND stage. EEND-VC resolves this ambiguity by clustering
the speaker embeddings to associate a global speaker identity
to each estimated speech activity, ac

t . We can then produce the
diarization results by stitching the speech activities associated
with the same speaker identity.

Prior works have explored various clustering approaches
and reported superior performance with cAHC [14]. In this pa-
per, we propose an alternative clustering approach.

3. Proposed multi-stream VBx
As mentioned in section 1, the original derivation of VBx as-
sumes a single embedding vector per segment and no overlap.
Consequently, we need to generalize it if we want to use it for
clustering the multi-stream embeddings of EEND-VC.

3.1. Multi-stream extension of VBx model

MS-VBx generalizes the VBx algorithm to multi-stream em-
beddings. With MS-VBx, multiple speakers are associated with
an HMM state, and the parameters corresponding to the same
speakers are tied together across HMM states, as shown in Fig-
ure 1-b). We design the HMM such that the same speaker can-
not appear more than once in a given state, i.e., there are no
states such as “A A,” “B B,” or “C C.” This design naturally im-
plements the cannot-link constraint required by EEND-VC. In
the following, we denote the HMM state index by s = 1, . . . , S,
and the speaker index by g = 1, . . . , Sg .

Similarly to VBx, MS-VBx aims at finding the most likely
sequence of latent variables Z = {z1, . . . , zT }, where zt de-
fines the hard alignment of the embedding vectors to the HMM
states for chunk t. The complete model is expressed as,

p(X,Z,Y) = p(X|Z,Y)p(Z)p(Y) (1)

=
∏

t

p(xt|zt)p(zt|zt−1)
∏

g

p(yg), (2)

where X = {x1, . . . ,xT } is the sequence of speaker embed-
dings, Y = {y1, . . . ,ySg} is the set of all the speaker-specific
latent variables, yg , and p(zt|zt−1) represents the state transi-
tion probability.

The output probability of HMM state s, p(xt|zt), repre-
sents the probability that speakers associated with that state are
active in that chunk.2 It is given by,

p(xt|zt = s) =
C∏

c=1

p(xc
t |zt = s), (3)

where p(xc
t |zt = s) = N (xc

t ;Vyg̃, I), and p(yg̃) =
N (yg̃;0, I). Here, g̃ is given by g̃ = Spk(s, c), where
Spk(s, c) is a mapping function that maps the state and stream
indexes (s, c) to the speaker index, g̃. In other words, we
tie together the Gaussian parameters associated with the same
speaker across HMM states and denote by Sg the set of HMM-
sub-states (s, c) associated with the speaker, g. We then have
Spk(s, c) = g,∀(s, c) ∈ Sg .

Following the original VBx [9], yg is a latent variable act-
ing as a prior on the mean of the speaker models p(xc

t |zt = s),
which is derived from a pre-trained PLDA model. V = Φ

1
2

is a feature transformation matrix, and Φ is a diagonal matrix
corresponding to the between-speaker covariance matrix in the

2We assume here for simplicity that there is an active speaker for
each stream, c, unlike what Fig 1-b) suggests. We deal with the possi-
bility of having inactive speakers in Section 3.3.
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transformed space of the PLDA model.
As in the original VBx, we set the transition probability to

p(zt = s|zt−1 = s′) = (1−Ploop)πs+δs,s′Ploop, where Ploop is
the loop probability, πs is the probability to transition to state s
from the non-emitting node, and δ is the Kronecker delta. Ploop

is a tuning parameter. We estimate πs with Bayesian inference.

3.2. Inference

The most likely sequence Z is obtained using VB inference.
This is solved by iteratively updating the approximate posterior
distribution q(Y) for a fixed approximate posterior q(Z) and
vice versa. The distribution q(Y) =

∏
g q(yg) is updated as,

q(yg) = N (y;αg,L
−1
g ), (4)

where

Lg = I+
FA

FB

(∑

t

∑

s∈Sg

γt,s

)
Φ, (5)

αg =
FA

FB
L−1

g

∑

t

∑

(s,c)∈Sg

γt,sρ
c
t , (6)

and ρc
t = V⊤xc

t . FA and FB are scaling factors for the evi-
dence lower bound objective (ELBO) [18].

As for updating q(Z), the state occupancy, γt,s, is com-
puted with the forward-backward algorithm using the state out-
put probabilities obtained as,

log p̄(xt|s) = FA

∑

c

(
αg̃ρ

c
t −

1

2
tr
(
Φ(L−1

g̃ +αg̃αg̃)
)

−D

2
ln(2π)− 1

2
xc
t
⊤xc

t

)
, (7)

where g̃ = Spk(s,c), and tr(·) is the trace operator. Note that Lg

is a diagonal matrix because Φ is diagonal, making the matrix
inversion in Eqs. (6) and (7) trivial.

We can estimate πs as in the conventional VBx [9]. The
inference process tends to set πs to zero for redundant states,
dropping these states [9]. With the original VBx, the number
of remaining states provides a direct estimate of the number of
speakers. For MS-VBx, we also derive the number of speak-
ers from the remaining HMM states, knowing the association
between speakers and states.

The inference with MS-VBx is similar to that of the con-
ventional VBx, except for the use of tied Gaussians, which in-
troduces the summation over the set of HMM-sub-states Sg in
Eqs. (5) and (6), and the summation over the different streams
in Eq. (7). MS-VBx can thus be easily implemented by extend-
ing an existing VBx code.3

3.3. Handling inactive speakers

The original VBx removes the silent portions of the signals be-
forehand since it is challenging to model silent segments with
speaker embeddings. In our case, there are chunks where the
number of active speakers may be smaller than the number of
streams, C. We denote by Ĉt the estimated number of active
speakers for chunk t, and by Cs the number of active speakers
for the HMM state s.

EEND-VC can provide information about the number of
active speakers in a chunk. For example, the EEND with global
and local attractors (EEND-GLA) approach [6] has a variable
number of outputs corresponding to the number of active speak-
ers in a chunk. In contrast, the EEND-VC scheme [14] has a

3https://github.com/BUTSpeechFIT/VBx

fixed number of outputs corresponding to the maximum num-
ber of speakers in a chunk but is trained to output speech ac-
tivity close to zero for outputs with no active speakers. We can
thus consider that an output, c, is inactive if 1

N

∑N
n=1 a

c
t,n < τ ,

where τ is a predetermined threshold.
We reformulate Eq. (2) by introducing a random variable

W = [w1, . . . , wT ] representing the number of speakers in a
chunk:
p(X,W,Z,Y) =

∏

t

p(xt, wt|zt)p(zt|zt−1)
∏

g

p(yg), (8)

where we express the state emission probabilities as,

p(xt, wt = Cs|zt = s) = p(wt = Cs)

Cs∏

c=1

p(xc
t |zt = s),

and p(wt = Cs) = δĈt,Cs
. We thus rely on the hard decision

from EEND-VC to determine wt.

3.4. Overall procedure

We first train a PLDA model on the speaker embeddings of
the EEND-VC model extracted from the training/adaptation
datasets. At inference time, we first compute speaker activi-
ties and embeddings with EEND-VC for each recording. Then,
as with standard VBx, we perform cAHC to obtain a rough esti-
mate of the number of speakers (which VBx can refine/reduce),
generate the HMM and initialize the state occupancy. Finally,
we run MS-VBx and stitch the activities, ac

t , based on the clus-
tering results, to obtain the diarization results. Note that com-
pared to standard VBx, MS-VBx requires more HMM states for
the same total number of speakers, increasing thus the compu-
tational complexity. Future works should address this issue.

4. Related works
Another VB scheme has been proposed recently for cluster-
ing of EEND-VC [19]. That work aimed to allow training
speaker embedding jointly with the clustering algorithm to re-
duce the mismatch between training and inference. The scheme
relied on using VB-Gaussian mixture model (VB-GMM) such
as infinite GMM (iGMM), which are more complex models, as
they assume a potentially infinite number of speakers. Besides,
with iGMM, it is challenging to implement the cannot-link con-
straint. In this paper, we base our study on VBx, a simpler and
more practical VB scheme.

Unlike [19], in the current stage of our investigations, we
apply MS-VBx only at inference time. However, the training
and inference mismatch can be compensated using the PLDA
model, which transforms the speaker embeddings for VBx. In-
vestigating tighter integration through joint training of EEND-
VC with MS-VBx will be part of our future works.

5. Experiments
We evaluate the effectiveness of the proposed method for the
CALLHOME [20], DIHARD II [21], and DIHARD III [22]
(full set) datasets.

5.1. Settings

Data: The training data comprised 5.5k hours of simulated
mixtures created as in [2]. It uses Switchboard-2 (Phase I & II
& III), Switchboard Cellular (Part 1 & 2), and the NIST Speaker
Recognition Evaluation (2004 & 2005 & 2006 & 2008) with
noise from the MUSAN corpus [23] and simulated room im-
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pulse responses [24]. The mixtures were of up to 7 speakers,
with an average silence duration between utterances of the same
speakers of 2 sec (β = 2).

For the CALLHOME dataset, we used the dev/test set def-
inition of prior works [25], which amounts to 249 and 250 ses-
sions for adaptation and test, respectively.

For each task, we used the development set for adapta-
tion and hyper-parameter tuning and reported results on the test
set. We report results using estimated speech activity detection
(SAD), corresponding to track 2 of DIHARD II and III chal-
lenges. Note that our system directly estimates the speech ac-
tivity using EEND-VC without using any external SAD.

EEND-VC configuration: We used a EEND-VC model
similar to that in [7]. We base our implementation on the pub-
licly available code.4 It consists of six-stacked Transformer en-
coder blocks with eight attention heads. We used the pre-trained
WavLM-large to obtain the input speech features to the EEND-
VC model as in [7]. The input feature dimension was 1024,
and the output dimension for each attention block was 256. To
produce the final output, the encoder’s output is projected with
a linear layer into C = 3 output streams, where each output
consists of the frame-by-frame speaker activity binary decisions
and the speaker embedding of 256 dimensions.

We trained the EEND-VC model using chunks of 15 sec
and sub-chunks (or subsequences in [6]) of 5 sec, using a similar
training scheme as [6]. We trained the model for 70 epochs with
a batch size of 2048 and averaged the model over the last five
epochs. We used the Adam optimizer with the learning rate
scheduler introduced in [26] with 25000 warm-up steps.

For adaptation, we retrained the averaged model on the
adaptation set for three epochs. We fixed the WavLM param-
eters during training but retrained them during adaptation with
a learning rate of 10−5 and a batch size of one. We performed
adaptation using chunks of 30 sec and sub-chunks of 5 sec. At
test time, we reduced the sub-chunk length to 1.5 sec. We set
the threshold τ to detect the silent speaker at 0.05.

Clustering parameters: We compare the proposed MS-
VBx with cAHC [7, 14]. We normalized the embedding with
the L2 norm, thus the maximum distance between two embed-
dings is 2. We reduced the embedding dimension to 32 with a
linear discriminant analysis (LDA) model trained on the adap-
tation set. For cAHC, we used the Euclid distance to cluster
the embeddings. We tuned the distance threshold for AHC for
values between 1 and 0.8 on the dev set.

For MS-VBx, we trained the PLDA model on the speaker
embeddings obtained by processing the adaptation data with
EEND-VC and applied the corresponding transformation to the
embeddings. We used FA = 0.4, FB = 17 and set the loop
probability, Ploop, at 0.8. Besides, we applied a median filter on
the predicted diarization results with a window of 1.0 sec for
CALLHOME and 0.28 sec for DIHARD II and III.

Baseline VC system (SAD + VBx + OSD): We compare
our diarization with a VC diarization system, which is based
on conventional (i.e., single stream) VBx [9]. First, we used
a SAD suited for telephone speech and based on time-delay
neural networks and statistical pooling5 for CALLHOME and
a SAD suited for wide-band data released in pyannote [27] for
DIHARD II and III. Then, we applied VBx [9] and assigned the
second nearest speaker to the segments detected as overlapping
with overlapped speech detection (OSD) [28].

4https://github.com/nttcslab-sp/
EEND-vector-clustering

5http://kaldi-asr.org/models/m4

Table 1: DERs (%) for CALLHOME (CH), DIHARD II (DH II),
and DIHARD III (DH III). The numbers in parenthesis indicate
the speaker counting performance in terms of ME.

System CH DH II DH III

1 SAD + VBx + OSD 13.6 26.8 20.5
2 SAD + VBx + resegm. [29] - 26.3† 19.3
3 EDA-TS-VAD [30] 11.2 - -
4 USTC-NELSLIP DH III [11] - - 16.8
5 EEND-GLA [6] 11.8 28.3 19.5
6 EEND-VC w/ WavLM [7] 10.4 - -

7 EEND-VC (cAHC) 11.1 (1.2) 28.2 (3.2) 19.3 (1.3)
8 + MS-VBx (Proposed) 10.4 (0.6) 26.4 (1.1) 18.2 (0.7)

†results taken from [31].

Evaluation metrics: We evaluated results in terms of DER
accounting for the overlap regions with a collar value of 0.25
sec for CALLHOME and 0 sec for DIHARD II and III. We used
an estimated number of speakers for all experiments, where the
number of speakers was obtained as in [14] for cAHC and as the
number of remaining Gaussians with VBx. We also evaluated
the speaker counting performance in terms of mean error (ME),
ME = 1

R

∑R
r=1 |Cr − Ĉr|, where Cr and Ĉr are the actual

and estimated number of speakers in recording r, and R is the
total number of recordings in the test set.

5.2. Results

Table 1 compares the DER for various diarization systems and
our proposed EEND-VC with MS-VBx on CALLHOME, DI-
HARD II and III datasets. The upper part of the table shows the
performance of competitive VC-based systems (systems 1 and
2), TS-VAD-based systems (systems 3 and 4), and EEND-VC-
based systems (systems 5 and 6). To the best of our knowledge,
these systems represent the state-of-the-art for these tasks. Sys-
tem 7 consists of our baseline EEND-VC baseline system using
cAHC for clustering. System 8 is the same system using the
proposed MS-VBx.

Our baseline EEND-VC (system 7) reproduces the
WavLM-based system [7] (system 6). It performs slightly worse
on the CALLHOME dataset (i.e., DER of 11.1 vs. 10.4 in [7]),
probably because of the difference in the simulated training
data. However, it is still a relatively strong baseline, outper-
forming most prior works on the CALLHOME and DIHARD
III datasets. The DIHARD III top system (system 4) performs
significantly better, but it is a much more complex system,
which combines several diarization approaches [11].

By comparing systems 7 and 8, we confirm that using the
proposed MS-VBx reduces DER compared to cAHC for all
three datasets. It also significantly reduces speaker counting er-
rors by about 50%. EEND-VC using the proposed MS-VBx
achieves similar or superior performance than most prior di-
arization systems on these tasks. These results demonstrate the
potential of the proposed MS-VBx for speaker diarization.

6. Conclusion
In this paper, we have introduced MS-VBx, which is an exten-
sion of the VBx algorithm to perform clustering on the multi-
stream embeddings generated by recent EEND-VC diarization
systems. We have demonstrated the potential of MS-VBx on
three popular datasets. In future works, we plan to investigate
joint-training of EEND-VC system with the MS-VBx cluster-
ing. We will also test the proposed MS-VBx with other EEND-
VC frameworks such as EEND-GLA [6].
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