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1Speech@FIT, Brno University of Technology, Czechia. 2Phonexia, Czechia.
3Univ. Grenoble Alpes, France. 4University of Pittsburgh, USA.

kesiraju@fit.vutbr.cz, xsarva00@stud.fit.vutbr.cz, tomas.pavlicek@phonexia.com,
cecile.macaire@univ-grenoble-alpes.fr, alejandrociuba@pitt.edu

Abstract
This paper presents techniques and findings for improv-

ing the performance of low-resource speech to text translation
(ST). We conducted experiments on both simulated and real-
low resource setups, on language pairs English - Portuguese,
and Tamasheq - French respectively. Using the encoder-decoder
framework for ST, our results show that a multilingual auto-
matic speech recognition system acts as a good initialization
under low-resource scenarios. Furthermore, using the CTC as
an additional objective for translation during training and de-
coding helps to reorder the internal representations and im-
proves the final translation. Through our experiments, we try to
identify various factors (initializations, objectives, and hyper-
parameters) that contribute the most for improvements in low-
resource setups. With only 300 hours of pre-training data, our
model achieved 7.3 BLEU score on Tamasheq - French data,
outperforming prior published works from IWSLT 2022 by 1.6
points.
Index Terms: speech translation, low-resource, multilingual,
speech recognition

1. Introduction
Speech translation (ST) systems consume speech (features)
from source language as input and generate text in the target
language. A cascaded approach to this task involves passing
speech through an automatic speech recognition (ASR) sys-
tem that generates (decodes) n-best discrete text-hypotheses
in source language, which are then passed on to a text-based
machine translation (MT) system to generate the text in tar-
get language (Fig. 1a). Here, the errors from the ASR outputs
are likely to be propagated to the MT system. End-to-end ap-
proaches aim to overcome such errors by establishing a con-
tinuous (differentiable) path from input source speech to tar-
get translations (Fig. 1b) [1, 2]. End-to-end approaches based
on encoder-decoder architectures also make use of source tran-
scriptions to provide additional supervision (Fig. 1c) [3]. There
were also attempts to train a direct speech translation system
without relying on source text, however such approaches were
studied only on high-resource scenarios (Fig. 1d) [4]. For high
resource scenarios, the ASR on source language can be trained
on huge amounts of available transcribed data, and the MT can
be also trained on massive parallel data. Such trained modules
can be used as initializations in any of the above frameworks.

However, such a luxury is not available in low-resource sce-
narios, where neither source speech transcriptions, nor source to
target parallel text data are available. Moreover, the amount of
speech translation training data can also be very limited (e.g.
< 20 hours), which is also the scenario for most of the ex-
periments and analyses in this paper. Automatic translation of
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Figure 1: Cascaded and end-to-end frameworks for speech
translation. x is the input speech (features), y is the corre-
sponding text transcriptions, and z is the target text transla-
tions. h is the hidden representation from ASR that establishes
the continuous path between ASR and MT models. The ASR,
MT, encoder and decoder modules can be initialized from vari-
ous kinds of pre-trained models.

speech from a low-resource to high-resource language has ap-
plications in topic detection [5, 6]. In such low-resource scenar-
ios, one can rely on transfer learning, where the ST model or
parts of it are either initialized from a target-language ASR or
MT or a speech representation model based on self-supervised
learning (SSL). More specifically, in an encoder-decoder frame-
work for speech translation, the speech encoder can be initial-
ized from a pre-trained ASR [7] or SSL [8], whereas the decoder
can be initialized from a pre-trained ASR [9] or MT [10] model.
The model can then be fine-tuned using the target speech trans-
lation data. Depending on the choice of initializations, the en-
coder and decoder can either be aligned or misaligned, i.e., the
contextual representations from encoder live in a subspace dif-
ferent than that of the representations in the decoder. Moreover,
the vocabulary of an ASR and MT system can differ, which also
contributes to the misalignment. Table 1 summarizes the vari-
ous initialization options and the consequent alignments. The
benefit of initializations from large pre-trained models is dimin-
ished when the fine-tuning data is very low, which can be at-
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Table 1: Initialization options for encoder-decoder based
speech translations systems.

Encoder init. Decoder init. Aligned?

Encoder from ASR Decoder from ASR Yes
Encoder from ASR Decoder from MT No
Encoder from SSL Decoder from MT No
Random Random No

tributed to the misaligned representations during initialization.
Such a problem of misaligned initialization doesn’t arise

when both the encoder and decoder are initialized from a pre-
trained ASR. However, the ASR models assume monotonic
alignment between the input speech and target text, which is
not true in the case of speech translation. Here the challenge
is to learn the re-ordering with limited amount of ST training
data. While there are numerous approaches and analysis on
high-resource speech translation [11, 12, 13, 14], there is scope
for studying these techniques in low-resource scenarios.

1.1. Related works

Prior works [7, 9] have shown that a speech translation system
initialized from a monolingual ASR built on target language
could benefit in low-resource speech translation. The authors
concluded that pre-training on any language could still yield a
benefit, however the use of pre-trained multilingual ASR is not
fully explored in their work.

The Connectionist-temporal classification (CTC) [15] was
originally proposed for ASR. The CTC model built on RNN en-
coder assume a monotonic alignment between the input speech
(features) to the target tokens, which is not suitable for speech
translation. Chuang et al. [11] have shown that transformers
trained with CTC objective for speech translation can learn to
reorder. This has motivated other works exploring direct speech
translation with CTC as an auxiliary objective only during train-
ing [4]. More recently, Yan et al. [16, 14] have seen the bene-
fits of joint training and decoding for speech translation. How-
ever, their models and experiments were mostly focused to mid-
to-high resource language where source transcriptions are also
available.

In the recent findings from IWSLT 2022 low-resource track
for Tamasheq → French speech translation task, the majority of
the techniques involving large multilingual SSL models (XLS-
R) and pre-trained MT models (mBART) have shown very poor
results [17, 18]. This motivated us to revisit the strategies for
training low-resource speech translation.

1.2. Contributions of the paper

• Study of pre-trained multilingual ASR as initialization for
low-resource speech translation with joint training and de-
coding with CTC objective in low-resource setups.

• Extensive analysis on the effect of various initialization, aux-
iliary objectives, hyperparameters and amounts of fine-tuning
data, identifies the most important factors that contribute
most to the improvements.

• On low-resource Tamasheq → French task, our ST model
initialized from a pre-trained multilingual ASR with only 300
hours training data achieved 7.3 BLEU score, which is +1.6
points higher than the best published result from IWSLT’22.

Table 2: Statistics of speech translation data.

Speech translation data: hours (utterances)
Direction Training Dev. Test

taq→ fr 13.8 (4444) 1.9 (581) 2.0 (804)
en→ pt 292.5 (184.3k) 3.2 (2022) 3.7 (2305)

Low-resource simulation splits

en→ pt 50.0 (31.5k) 3.2 (2022) 3.7 (2305)
en→ pt 16.4 (10.5k) 3.2 (2022) 3.7 (2305)

2. Methodology
This section formally introduces the necessary terminology and
describes the methods we followed to train ASR and ST sys-
tems. The ASR is trained on several examples of paired speech
and text (xs,ys) from one or more (seen) languages s ∈ S. The
speech translation systems are trained on pairs (xu, zs), where
the input speech xu is from an unseen language u /∈ S, and the
target translation text zs is from seen languages s ∈ S.

2.1. Training ASR

A transformer [19] based encoder-decoder architecture with ad-
ditional CTC layer is used to train the ASR models. For multi-
lingual ASR, we keep a separate vocabulary for each language,
which results in a language-specific CTC layer at the output of
the encoder, and language-specific input (embedding) and out-
put layers in the decoder. Such an architecture allows us to
decode tokens only in the desired target language. The models
are trained with joint CTC and attention objective function [20]

Lasr(x
s,ys) = λLctc(x

s,ys) + (1− λ)Latt(x
s,ys). (1)

2.2. Training ST

The ST models are also based on transformer encoder-decoder
architecture and are identical to the ASR models, which al-
lows us to initialize ST models with any pre-trained ASR. More
specifically, we are given speech xu from a previously unseen
language u /∈ S, and its translation zs from a language that was
already seen, s ∈ S. The ST model is also trained with joint
objective function

Lst(x
u, zs) = αLctc(x

u, zs) + (1− α)Latt(x
u, zs). (2)

2.3. Decoding

A beam search based joint decoding [20] that relies on the
weighted average of log-likelihoods from both the CTC and
transformer decoder modules is used, that produces the most
likely hypotheses according to

ẑ = argmax
z

β log pctc(z | x)+(1−β) log patt(z | x). (3)

3. Experimental setup
The ST experiments were conducted on two datasets: (i)
Tamasheq (taq) → French (fr) from IWSLT’22 evaluation cam-
paign [17, 18], and (ii) English (en) → Portuguese (pt) from
HOW2 dataset [21]. The latter dataset is mainly used for simu-
lating low-resource setups with various amounts of fine-tuning
data. Moreover, it also allows is to compare the performance
against a typical end-to-end system exploiting source transcripts
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Table 3: Statistics of data for training ASR models.

ASR data: hours
Languages Training Dev. Test

fr {50. . . 764} 25.5 26.1
pt 50 10.3 11.1
de, es, fr, it, pl, pt (6L) 300 124.1 {26.1, 11.1}

Table 4: Performance of various ASR systems in terms of word
(WER) and character error rates (CER).

Training Dev Test
ASR data (in hrs.) WER CER WER CER

French (fr)

Mono (fr)

50 39.1 21.2 42.7 23.9
100 30.3 15.4 33.9 17.9
200 23.8 11.8 27.4 14.1
300 21.5 10.6 24.7 12.6
764 16.8 8.1 19.8 9.9

Multi (6L) 300 33.0 16.8 36.4 19.2

Portuguese (pt)

Mono (pt) 50 27.0 11.2 29.6 12.6
Multi (6L) 300 23.3 9.1 24.7 9.8

and source-target parallel data. Table 2 presents the ST data
statistics, where the bottom half indicates the low-resource sim-
ulation splits derived from HOW2 dataset. To train multilin-
gual ASR models, we picked a subset of 6 languages (6L) from
Mozilla Common Voice v8.0, including French and Portuguese.
We sampled 50 hours of transcribed data for each language,
which resulted in 300 hours of training data. For monolingual
ASR training, we considered the same 50hr for Portuguese. In
case of French, we trained several monolingual ASR systems on
various amounts of data: {50, 100, 200, 300, 764} hours. The
Table 3 presents the statistics of data used for ASR training.

3.1. Model configuration and hyper-parameters

The input to the model is 80-dimensional filter-bank features
appended with 3-dimensional pitch features extracted from the
speech signal for every 25ms, with a frame shift of 10ms. The
NN model is based on standard transformer encoder-decoder
architecture starting with Conv2d layer with 256 output chan-
nels, kernel size (3, 3), stride 2. This is followed by 12
transformer layers in the encoder and 6 in the decoder, with
dmodel = 256, dff = 2048, heads = 4, dropoutff =
{0.1, 0.2, 0.3}, dropoutatt = {0.0, 0.1}. The models are
trained for {100, 200} epochs with 25000 warm-up steps and
a peak learning rate from {5e − 3, 1e − 2}, using ADAM opti-
mizer. The batch size is varied among, {64, 96, 128} depending
on the available GPU memory.

The CTC weight λ when training ASR models was cho-
sen from λ = {0.3, 0.5, 0.9}. Higher CTC weight gave lower
WERs when training on low amounts (e.g. 50hr) of data. The
CTC weight (α = {0.0, 0.1, 0.5}) during ST training and de-
coding (β = {0.0, 0.1, 0.3, 0.5, 0.7, 0.9}) are the main hyper-
parameters explored in our experiments, while keeping the rest
of the network architecture the same across all the ASR and ST
setups. Decoding is done with beam size 10, while best β was
chosen based on performance on development set.
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Figure 2: Performance of ST systems on taq → fr dataset, rely-
ing on various initialization, fine-tuning and decoding schemes.

All the text is tokenized using MOSES toolkit. We retain the
true-case and punctuation for both ASR and ST experiments,
which allowed us to use the same vocabulary of tokens for both
ASR and ST models. Unigram-based segmentation method [22]
from SentencePiece [23] was used to learn the sub-word vocab-
ulary of 1000 tokens for each language. The subword segmen-
tation algorithm was trained only on the text transcripts from
ASR training data. In case of random initialization of ST mod-
els, the ST training data was used of learning the segmentation.

3.2. Training details

All the monolingual ASR models have 27.93M parameters,
whereas the multilingual ASR has 31.78M. Depending on the
size of training data, it took between 6 - 30 hours on a single
GPU to train these models. The ST models were initialized
from pre-trained ASR models in two ways: (i) retain the CTC
layer and perform joint training, (ii) discard the CTC layer to
perform standard training with attention loss. In case of initial-
ization from multilingual ASR model, the parameters of non-
target language do not get updated. All our experiments were
conducted on a custom clone1 of ESPnet2 framework [3].

4. Results and discussion
This section presents the results of ASR and ST systems. Since
we trained ASR models on true case text with punctuation, the
word-error-rates (WER) would be slightly higher than if we
were to train on lower case text. Hence, we report both WER
and character error rate (CER) for ASR systems. The ST sys-
tems were evaluated using 4-gram BLEU with the help of sacre-
bleu [24] library2. We additionally report CHRF23, an F-score
based on character n-grams [25].

Table 4 presents the results of our ASR systems in terms of
word and character error rates (WER, CER). In case of French
(fr), we can see that the multilingual ASR model performs

1https://github.com/BUTSpeechFIT/espnet/tree/
main/egs2/iwslt22_low_resource/st1

2nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
3nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.1
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Figure 3: Effect of various initialization and amounts of ST fine-tuning data.

worse than the best monolingual ASR in terms of WER. The
difference in CER is a bit lower. This is caused by smaller
model capacity (dmodel = 256). However, we still report re-
sults with this model, as it would be comparable to the mono-
lingual counter-parts in terms of architecture and parameters.

The ST models initialized from pre-trained ASR are fine-
tuned in two ways (i) no CTC (ii) CTC as auxiliary objective.
Once the ST model is fine-tuned, the beam-search based decod-
ing can use either CTC score (joint decoding) or not. The Fig. 2
illustrates the performance of ST system relying on various ini-
tializations, fine-tuning and decoding schemes. We can observe
three things from the Fig. 2

1. CTC as auxiliary objective for translation helps across vari-
ous initializations. Joint CTC decoding gives further benefits.

2. Target language ASR models (fr.50, fr.100, . . ., fr.764) act
as good initializations (which was also observed in prior
works [7]) for speech translation.

3. The multilingual model trained on 300 hours of speech (6L
300h), which includes only 50 hours of target French data,
performs better than most of the French monolingual models
trained on much larger data. This suggests that even if the
target-language has low-to-moderate amount of transcribed
speech, one can rely on a multilingual ASR model.

Table 5 compares our best systems (from Fig 2) with the results
reported in the findings of IWSLT’22 [17].

With the low-resource simulation experiments (en → pt),
we aim to identify saturation of benefits from pre-trained ASR,
given source language transcriptions and source → target par-
allel data. We trained two source language (en) ASR models
on 16.4 and 50 hours of transcribed speech, respectively (Ta-
ble 2). Then, we trained two en → pt MT systems on the
corresponding parallel sentences (10.5k, 31.5k). We used the
speech encoder from ASR and decoder from MT model to ini-
tialize an ST model, which was then fine-tuned on 16.4 and 50
hours respectively. During this fine-tuning, we use source lan-
guage transcripts as targets for CTC objective function (Fig 1c).
This baseline is represented by (ASR+MT+ST). Fig. 3 shows
the BLEU score on test set for all kinds of initializations. Un-
der the low-resource setup of 16.4h, we can see that models
based on target-language pre-trained ASR outperform the base-
line by a decent margin. In case of mid-resource setup, i.e.,
with 50 hours of data, the gap reduces to 1 BLEU score. Both
Fig 2 and 3 have same trends, that CTC as auxiliary objective
for translation and joint decoding is beneficial. We also experi-
mented with various CTC weights (α) during training. While in
most of the low-resource setups, α = 0.1 seemed to give best
result. As the amount of ST fine-tuning data increased, we ob-
served that higher CTC weight α = 0.5 yielded better results.

However, a further investigation on the influence of pre-trained
multilingual ASR models in high-resource setups is required.

Table 5: Performance of ST systems on taq → fr. †The findings
of IWSLT [17] reports CHRF++, however their sacrebleu sig-
nature (footnote 30) with option nw:0 suggests that it is CHRF,
with an unknown β. Hence, the numbers cannot be compared.

Dev. Test
System BLEU CHRF2 BLEU CHRF2

Wav2vec2 (taq) + ST [17] 8.3 - 5.7 31.4†

ASR + ST [18] 6.4 - 5.0 -
XLS-R + mBART [17] - - 2.7 24.3†

Mono (fr 764h) + ST 9.9 35.2 7.4 30.9
Multi (6L 300h) + ST 9.9 34.9 7.3 30.5

5. Conclusion
In this paper, we revisited several strategies for improving low-
resource speech translation. We combined recent findings from
joint-training and decoding in ASR and direct speech transla-
tion techniques and studied them with-respect-to various ini-
tializations in low-resource scenarios. Our experiments re-
confirmed prior works that target-language ASR acts as good
initialization for downstream speech translation. In addition, we
found that pre-trained multilingual ASR is a viable alternative
and performs better than the monolingual ASR in a majority of
the settings. Finally, with only 300 hours of pre-training, our ap-
proaches achieved 7.3 BLEU score on low-resource Tamasheq
- French dataset, outperforming prior works from IWSLT 2022.

In the future, we would like to study the effect of multilin-
gual ST fine-tuning, as it should provide additional supervision,
thus help the overall translation quality. Another important di-
rection relates to quantifying misaligned representations when
initializing modules from different modalities.
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