Semantic Mutation Operator for Fast and
Efficient Design of Bent Boolean Functions

Jakub Husa[0000—0003—0863—9952 a[0000—0002— 2693—9011]

] and Luké4s Sekanin
Faculty of Information Technology, Brno University of Technology,
Bozetéchova 2/1, 612 00 Brno, Czech Republic
ihusa@fit.vut.cz

Abstract. Bent functions are a type of Boolean functions with proper-
ties that make them useful in cryptography. In this paper we propose a
new semantic mutation operator for design of bent Boolean functions via
genetic programming. To assess the efficiency of the proposed operator,
we compare it to several other commonly used non-semantic mutation
operators. Our results show that semantic mutation makes the evolu-
tionary process more efficient, and significantly decreases the number of
fitness function evaluations required to find a bent function.
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1 Introduction

Boolean function is any function that takes some number of binary inputs and
provides a single binary output. In symmetric cryptography Boolean functions
often represent the only nonlinear element of a cipher [0].

To be usable for this purpose, the cryptographic function must fulfill several
criteria, one of which is to have a high degree of nonlinearity (NL). The non-
linearity of a functions describes its Hamming distance to the nearest nearest
affine function (which is a function that is either linear, or complementary to a
linear function). To evaluate the nonlinearity of an n-input Boolean function f
its truth table needs to be converted to Walsh spectrum (W), using the Fast
Walsh-Hadamard transform [0l]. Walsh spectrum shows the correlation between
the Boolean function and the set of all affine functions, and defines the nonlin-
eaity of a Boolean function as follows:

NL(f) =2 = 5 max(W) (x) &

The maximum nonlinearity of a function is limited by the number of its input
variables as given by the following equation:

NL(fpent) = 2" " =271 (2)
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This limit is known as the covering radius bound and can only be achieved
by functions with an even number of variables. Functions that achieve this limit
are known as bent Boolean functions. Notably, the nonlinearity of a function is
invariant under all affine transformations, meaning that all of its variables are
mutually interchangeable [f.

2 Methodology

To design the bent functions we use a heuristic method known as genetic pro-
gramming (GP) whose syntactic tree is built out of nodes. Each of these nodes
contains three genes, one that specifies the operation that is to be executed,
and two that specify its inputs. Each input of a node can point to one of the
Boolean function’s variables, or to a new node. To avoid bloating of the tree,
the maximum tree-depth is limited and the inputs of nodes in the bottom-most
layer can only point to variables [d].

The population then undergoes an evolutionary process. Following (1+))
evolution strategy, in each generation the fittest and newest individual is selected
to be a parent that generates A\ offspring through genetic mutation. Because
the goal of this paper is to show the effects of genetic mutation, unlike most
GP implementation, we do not use genetic crossover. Then, the fitness of the
newly created individuals is evaluated, new best parent is selected, and this cycle
repeats until the desired solution is found. In our case, the fitness of an individual
is given by its nonlinearity (Eq. M) and our goal is to create a function that is
bent (Eq. B).

When a gene is mutated, it is changed to a random valid value. This can
mean a new randomly selected operation, a different input variable, or a newly
generated node. Three commonly used (non-semantic) mutation operators are
the uniform, point, and single mutation. Uniform mutation specifies a mutation
rate, which is applied to every gene in the chromosome. Point mutation specifies
a mutation count, and mutates the specified number of randomly selected genes.
Single mutation selects a single active node and then mutates all three of its
genes [d].

Our proposed semantic mutation operator is based on algebraic methods
of bent function construction, and works as follows. First we randomly chose
whether to mutate the structure or the function of the chromosome, and then
randomly select one of two possible actions. If mutating the structure, the action
can be to either activate or deactivate a new node. When activating a new
node, a random input variable is selected and replaced with a new node. When
deactivating a node, a random node is replaced with a variable. If mutating the
function, the action can be to either shuffle all of the individual’s variables or all
of its operators.

When shuffling variables, the input variables of all nodes are replaced with
new, randomly selected variables, with heavy bias towards selecting variables
with fewest uses in order to create a more even distribution, as seen in Figure 0.
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Fig. 1. Shuffle terminals - this action improves fitness by changing the distribution of
terminal variables. Numbers above the nodes show their current/maximal nonlinearity.
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Fig. 2. Shuffle operators - this action improves fitness by changing operators of some
of low-fitness nodes, while keeping the nodes with good fitness intact. Numbers above
the nodes show their current/maximal nonlinearity.

When shuffling operators, the operations of all nodes are randomized with
probability inversely proportional to their fitness (nonlinearity) to avoid disrup-
tive mutations, as seen in Figure B.

3 Results

In our experiments, we aim to design bent functions with n = 12 input variables,
and measure the number of evaluations necessary to find the desired function. To
make the comparison between the various mutation operators as fair as possible,
all setting use the same set of operators {AND, XOR}, which is sufficient and
highly effective for designing bent Boolean functions [2]. All settings also use
the same tree depth d = 7, and population size A = 4, which is unusually
low for GP, but justified by the lack of genetic crossover, which makes larger
populations unnecessary [3]. Based on our preliminary experiments, we select
the best mutation rate mr = 3% used by uniform mutation, and mc = 4 used
by point mutation.
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Fig. 3. Convergency curves for various types of mutation. The lines show the medians
of 100 independent runs. The shaded area additionally shows the fist and third quartile
of the semantic mutation. Note that the X-axis (evaluations) uses a logarithmic scale,
and the Y-axis (fitness) terminates at the nonlinearity of an 12-input bent function
(NL(fvent) = 2016).

Using the four types of mutation, the process requires a median of 109 (se-
mantic), 479 (uniform), 501 (single) or 673 (point) evaluations to find a bent
function, as shown in Figure B, which presents the convergency curves for the
four examined types of mutation.

In conclusion, our results show that the proposed semantic mutation op-
erator reduces the median number of fitness function evaluations necessary to
find a bent function by 77.2% compared to the second-best operator, and thus
significantly improves the efficiency of the evolutionary process, verified by non-
parametric Mann-Whitney U-test at o = 0.05.
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