
Computers & Security 127 (2023) 102923

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Rise of the Metaverse’s Immersive Virtual Reality Malware and the

Man-in-the-Room Attack & Defenses

Martin Vondráček

a , ∗, Ibrahim Baggili b , ∗, Peter Casey

c , Mehdi Mekni d

a Faculty of Information Technology, Brno University of Technology, Božet ̌echova 2, 612 00 Brno, Czech Republic
b Louisiana State University, Division of Computer Science & Engineering & Center for Computation and Technology, Baton Rouge, LA 70803 USA USA
c University of New Haven, West Haven, CT 06516 USA
d University of New Haven, Laboratory for Applied Software Engineering Research (LASER), West Haven, CT 06516 USA USA

a r t i c l e i n f o

Article history:

Received 25 April 2022

Revised 2 September 2022

Accepted 17 September 2022

Available online 22 September 2022

Keywords:

Emerging technologies

Network-level security and protection

Network communications

Network Protocols

Protection mechanisms

Quality analysis and evaluation

System issues

Security and Privacy Protection

Authentication

Communications Applications

Virtual reality

Security and Protection

Artificial, augmented, and virtual realities

Invasive software (viruses, worms, Trojan

horses)

Unauthorized access (hacking, phreaking)

a b s t r a c t

The allure of the metaverse along with Virtual Reality (VR) technologies and speed at which they are

deployed may shift focus away from security and privacy fundamentals. In this work we employ classic

exploitation techniques against cutting edge devices to obtain equally novel results. The unique features

of the Virtual Reality landscape set the stage for our primary account of a new attack, the Man-in-the-

Room (MitR). This attack, realized from a vulnerable social networking application led to both worming

and botnet capabilities being adapted for VR with potential critical impacts affecting millions of users.

Our work improves the state-of-the-art in Virtual Reality (VR) security and socio-technical research in

VR. It shares several analytical and attacking tools, example exploits, evaluation dataset, and vulnerability

signatures with the scientific and professional communities to ensure secure VR software development.

The presented results demonstrate the detection and prevention of VR vulnerabilities, and raise questions

in the law and policy domains pertaining to VR security and privacy.

Published by Elsevier Ltd.

A

C

D

S

M

t

S

w

O

P

i

S

V

i

(

M

h

0

Abbreviations: API, Application Programming Interface; AR, Augmented Reality;

ST, Abstract Syntax Tree; C&C, Command & Control; CA, Certificate Authority; CI,

ontinuous Integration; CLI, Command-line Interface; DLL, Dynamic Link Library;

oS, Denial of Service; FOR, False Omission Rate; FOSS, Free and Open-Source

oftware; FPR, False Positive Rate; HMD, Head-mounted Display; HTML, Hypertext

arkup Language; HTTP, Hypertext Transfer Protocol; JS, Javascript; MitM, Man-in-

he-Middle; MitR, Man-in-the-Room; MR, Mixed Reality; NIST, National Institute of

tandards and Technology; OSINT, Open Source Intelligence; OSN, Online Social Net-

ork; OSSTMM, The Open Source Security Testing Methodology Manual; OWASP,

pen Web Application Security Project; P2P, Peer to Peer; PoC, Proof of Concept;

PV, Positive Predictive Value; RCE, Remote Code Execution; RE, Reverse Engineer-

ng; SAST, Static Application Security Testing; SW, Samy Worm; TLS, Transport Layer

ecurity; TPR, True Positive Rate; UI, User Interface; VE, Virtual Environment; VR,

irtual Reality; WS, WebSockets; WSS, Secure WebSockets; XSS, Cross-site Script-

ng.
∗ Corresponding authors.

E-mail addresses: vondracek.mar@gmail.com (M. Vondráček), ibaggili@lsu.edu

I. Baggili), pgrom1@unh.newhaven.edu (P. Casey), mmekni@newhaven.edu (M.

ekni) .

i

a

c

v

i

t

m

t

n

(

o

D

a

w

V

V

ttps://doi.org/10.1016/j.cose.2022.102923

167-4048/Published by Elsevier Ltd.
Virtual Reality (VR) aims to create “immersive, interactive, and

maginative” simulations for the user through visual, haptic, and

uditory output (Larin, 2021 ; Mekni, 2010). It is produced by a

omputer system that emulates realistic scenes to provide con-

enience for users to experience the virtual world. As an emerg-

ng human-computer interaction technology, VR uses several sys-

ems including voice input/output, motion sensing, network com-

unication, computer graphics, and wide-angle stereo display sys-

ems. The applications of VR are gradually expanding, including but

ot limited to entertainment, education, healthcare, and military

 Zhang et al., 2020). VR headsets have existed since the 1960s and

ne of the first devices that could be considered VR Head-mounted

isplay (HMD) was presented by Sutherland (1968) . Commercial

pplications of VR can be dated back to 1980s (Lanier, 2017), where

e can also find steps towards VR social applications such as

PL’s Reality Built for Two (Blanchard et al., 1990a,b). Affordable

R equipment is fairly recent to the consumer market (Sala, 2021),

https://doi.org/10.1016/j.cose.2022.102923
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102923&domain=pdf
mailto:vondracek.mar@gmail.com
mailto:ibaggili@lsu.edu
mailto:pgrom1@unh.newhaven.edu
mailto:mmekni@newhaven.edu
https://doi.org/10.1016/j.cose.2022.102923

M. Vondráček, I. Baggili, P. Casey et al. Computers & Security 127 (2023) 102923

a

v

w

g

a

t

s

j

t

c

2

p

m

t

2

e

t

E

m

l

m

o

t

w

F

a

r

M

t

t

a

b

t

e

n

p

m

f

m

h

i

r

t

t

g

h

o

a

o

F

a

l

a

g

o

C

o

H

S

g

I

p

s

fi

(

i

h

&

r

1

1

b

s

t

o

o

s

V

t

t

i

i

s

s

c

t

a

(

h

t

t

S

L

i

d

l

p

H

n

s

w

 headset with fully-embodied VR capabilities the Oculus Rift De-

elopment Kit 1became available in 2013 and its consumer version

as released in 2016 (Oculus VR, 2015). The VR market has been

rowing ever since, with revenues projected to grow from $12B to

 $100B in the next five years (Merel, 2017) .

Recent technological and manufacturing improvements in VR

ilted the major use case towards entertainment by home con-

umers. The Steam platform Steam (n.d.) , both a partial sub-

ect of this study and popular game/application marketplace, es-

imated VR usage has doubled in 2018 and number of monthly-

onnected VR headsets reached 2 million in 2020 (Heaney, 2019,

021 ; Lang, 2021). Furthermore, demand for VR games and ap-

lications grew with sales up 71% in 2020 (Steamworks Develop-

ent, 2021). The excitement for VR continues as Steam reported

hat VR userbase grew 11% with unique play sessions up 22% in

021 (Steamworks Development, 2022).

While VR allows users to experience games, movies, and

vents with much greater presence and immersion than tradi-

ional mediums, the user’s ability to interact with the Virtual

nvironment (VE) and peers elevates VR above other entertain-

ent sources. This has benefited social interactions in particu-

ar, where not only are audio and video shared, but also a com-

on space and simulated movements. In a 2018 survey, 77%

f respondents reported an interest in more VR social interac-

ion (Koetsier, 2018). Many companies have brought social net-

orking to VR, such as Facebook Horizon (previously known as

acebook Spaces), AltspaceVR by Microsoft, vTime, VRChat, and

lso Bigscreen, which was used for Proof of Concept (PoC) in our

esearch (Bigscreen, Inc., 2018 ; Facebook Technologies, LLC., 2020 ;

icrosoft, n.d. ; VRChat Inc., n.d. ; vTime Holdings Limited, n.d.). At

he time of writing, companies have also started exploring building

he metaverse , a virtual universe.

Considering how lucrative social networks can be, along with

n anticipated uptick in social VR usage, an expected race would

e fought to establish the dominant market foothold. Undoubtedly,

his may pressure developers to push products to market without

xtensive security testing or a full understanding of the new tech-

ology. For this reason, we may expect bugs or errors would be

resent in this new medium. We posit that the connectivity and

edium of social VR applications drastically escalate the potential

or malware exploitation, especially with the establishment of the

etaverse . Malware authors often target social networks due to the

igh degree of user connectivity. This facilitates its rapid spread-

ng and has far-reaching effects similar to infectious diseases in

eal life (Danon et al., 2011). Although created with no mal-intent,

he Samy Worm, described in Section 1 , exemplifies the poten-

ial for social network malware to propagate swiftly. From a sin-

le user, the worm spreads to over 1 million victims in about 24

ours (Faghani and Saidi, 2009).

VR social environments are no exception to this possibility and

ffer a new and largely untested attack surface. While traditional

ttacks might target intellectual property or aim to disrupt a user

r infrastructure, VR has the potential to physically afflict the user.

urthermore, a wealth of information is often provided by both the

pplication and the VR system’s own tracking, which can then be

everaged against the victim.

In our work, we deliver novel VR attack concepts supported by

 model realization. Our attacks are generalizable since we tar-

et core technologies widely used in VR systems. We build upon

ur previous results (Yarramreddy et al., 2018 ; Casey et al., 2019a ;

asey et al., 2019b), and parts of the paper cover results of

ur vulnerability research conducted in 2018 (University of New

aven, 2019). Our current work contributes the following:

• We are the first to implement the VR Man-in-the-Room Attack.

Two of the authors coined and predicted this attack in previous

work (Casey et al., 2019a).
2
• We offer the primary account for an implemented VR-specific

Worm & Botnet .

• We improve state of the art of automated vulnerability detection

& prevention , as we implement and publish a series of analyt-

ical tools and vulnerability signatures as free and open-source

software (FOSS).

• We conduct a deep security analysis of a widely used immersive

VR social application and show by example the severe impact

of our attacks on VR users.

• We impacted practice with responsible disclosure as both

Bigscreen has patched their application, and Unity Technologies

documented our major discovered vulnerabilities and exploits.

• We share our demonstrative attacking tools and exploits for re-

search purposes as FOSS.

• We propose a new verification and validation dataset for

Javascript (JS) Static Application Security Testing (SAST) focused

on jQuery.

The remainder of the paper is organized as follows.

ection 1 provides an overview on related work and back-

round information about VR systems and social network worms.

n Section 2 , we present our novel attacks relevant to VR ap-

lications. Section 4 describes our methodology, apparatus, and

cenarios followed by our security analysis. Section 4.8 outlines our

ndings supported by a concrete realization of Man-in-the-Room

MitR) attack and VR worm. Section 4.9 summarizes potential mit-

gation and security suggestions. In addition, Section 5 documents

ow we improved the state-of-the-art in vulnerability detection

 prevention. Finally, Section 6 and Section 7 provide concluding

emarks, discuss results, and explore new research directions.

. Related work

.1. Security & privacy in VR

The security and privacy of VR technologies was investigated

y Ling et al. (2019) . The research exploited data from motion sen-

ors inside VR equipment to infer a user’s interaction with a vir-

ual keyboard and touchpad. Researchers further investigated ways

f interfering a user’s interaction with input devices in VE based

n stereo camera records of a user’s body movement. Moreover,

everal immersive VR attacks including ransomware which makes

R system unusable have been previously created by authors of

his work (Casey et al., 2019a). Because users are immersed in

he VE, these attacks managed to disorient and potentially phys-

cally hurt victims. It was possible to force movement of victims

n real space without their knowledge or consent (Human Joy-

tick Attack) (Casey et al., 2019a). Authors of this work also pre-

ented forensically significant artifacts which can be used to re-

onstruct activities in a VE (Yarramreddy et al., 2018). We have fur-

her shown the ability to visually reconstruct a VE from memory

rtifacts such as devices, room setup, location, and a user’s pose

 Casey et al., 2019b).

Security challenges of Mixed Reality (MR) applications were

ighlighted by Roesner et al. (2014) . McPherson et al. (2015) iden-

ified and responsibly disclosed several security vulnerabili-

ies in a selection of Augmented Reality (AR) frameworks.

ome of these concerns are shared with VR technologies.

ebeck et al. (2016) inspected security risks related to displaying

nformation in AR in a scenario with malicious applications. In ad-

ition, Lebeck et al. (2017) designed an AR platform architecture to

imit abilities of individual applications based on a configured out-

ut policy. A review on security threats in MR was presented by

appa et al. (2019) , while a survey of proposed protection mecha-

isms for MR was performed by De Guzman et al. (2019) . Another

tudy by Rokhsaritalemi et al. (2020) proposed a generic frame-

ork for MR applications. Work by Adams et al. (2018) focused on

M. Vondráček, I. Baggili, P. Casey et al. Computers & Security 127 (2023) 102923

V

V

p

e

t

p

t

1

t

(

t

l

d

V

b

W

P

i

W

v

t

w

V

t

E

L

p

d

a

T

g

M

p

v

w

w

S

i

p

f

fi

S

p

W

f

t

S

m

d

(

t

O

t

1

n

Fig. 1. Productivity use cases of the Bigscreen (Bigscreen, Inc., 2018).

Fig. 2. VR avatars interacting in a virtual room in Bigscreen. (Bigscreen, Inc., 2018).

w

p

B

l

c

t

r

a

v

m

l

a

fi

c

(

2

2

c

t

fi

e

m

t

u

f

c

v

i

c

p

t

R security and privacy perceptions by conducting interviews with

R users and developers, and by making a survey of VR privacy

olicies.

With respect to the existing literature, our work is the first to

xploit security vulnerabilities of a widely used VR social applica-

ion, create a proof-of-concept VR botnet and VR worm, and im-

lement the first Man-in-the-Room attack. It is also the first work

o explore defenses against such attacks.

.2. Security background

Security analysis and penetration testing methodologies are de-

ailed in The Open Source Security Testing Methodology Manual

OSSTMM) 3 (Herzog and Barceló, 2010). SP 800-115 from the Na-

ional Institute of Standards and Technology (NIST) further out-

ines security testing techniques and sets of tools useful for in-

ividual phases of a security assessment (Scarfone et al., 2008).

arious approaches to security and forensic analysis are studied

y Alsaadi et al. (2018) ; Dorai et al. (2018) ; Zhang et al. (2017) .

ork by Haigh et al. (2019) also includes implementation of

oC malware. A widely used web application penetration test-

ng methodology and framework has been published by Open

eb Application Security Project (OWASP) (Meucci et al., 2014 ;

an der Stock et al., 2017).

In regards to network communication analysis, a Man-in-

he-Middle (MitM) attack is used to intercept and spoof net-

ork traffic (Cortesi et al., 2010–; Vondráček et al., 2018 ;

ondráček et al., 2018). Security analysis can employ this

echnique to detect possible information leak and for Reverse

ngineering (RE) purposes. For example, authors in Meyer-

ee et al. (2018) utilized network traffic analysis techniques of a

opular mobile AR application. They applied RE to extracted data,

etected patterns, and inferred users’ locations.

RE techniques exploit the weak forms of obfuscation and

nalysis protections that software applications typically utilize.

his applies to both compiled and interpreted programming lan-

uages (Heyes, 2016 ; Palladino, 2012 ; Paola, 2015). Authors in

ateas and Montfort (20 05) ; Montfort (20 08) present several ap-

roaches for code obfuscation. Our work in Vondráček (2019) pro-

ides a survey of tools for RE of C# & .NET and deobfuscation of JS

hich help to learn inner logic of an application.

In addition to the use of the MitM attack, we also propose a

orm whose characteristics are similar to the Samy Worm (SW).

W targeted MySpace pages where the protagonist purposefully

nfected his own profile. The MySpace servers then delivered the

ayload to any requester of the infected page which then in-

ected the victim’s profile (Securtiy, 2006). While infected pro-

les serve to further propagate the Worm, authors in Faghani and

aidi (2009) suggested that the centralized distribution of the

ayload prevents network congestion as caused by conventional

orms. Although this Worm was limited to the exposure of in-

ected users, it propagated at an alarming rate. Unlike SW, our at-

ack against the VR application is not limited by a given Online

ocial Network (OSN) topology.

The management of worm infections requires preventative

easures. Authors in Sun et al. (2009) proposed a client side

etection system which monitors Hypertext Transfer Protocol

HTTP) requests containing self-replicating payloads. Other preven-

ive measures suggest the deployment of decoy profiles within an

SN (Xu et al., 2010) or the use of a proxy to monitor HTTP con-

ent propagation (Livshits and Cui, 2008).

.3. Bigscreen application

Bigscreen is a VR platform for social activities. It is intended

ot only for entertainment activities like playing computer games,
3
atching movies and just hanging out, but also for professional

roductivity and remote collaboration purposes (see Figure 1).

igscreen is available for the Windows operating systems via Ocu-

us Home, Steam, and Microsoft Store.

In Bigscreen’s VE, every user is represented by an avatar, which

opies moves of the user’s head and hands in reality as illus-

rated in Figure 2 . Users create and access virtual rooms, control

esources via HMD, and share their computer screens, computer

udio, and microphone audio. Bigscreen supports messaging ser-

ices among the participants.

Every room has a unique Room ID in the form of 8 alphanu-

eric characters (e.g. room-9hckep83). A room can exist as pub-

ic , or private (invite-only) . All public rooms are available on the

pplication’s main screen. Private rooms can be joined using a con-

dential Room ID , and no further authorization is required. Appli-

ation’s Code of Conduct stated the communication is Peer to Peer

P2P) and traffic is encrypted.

. Man-in-the-room attack & VR worm

.1. Concepts definition

A paramount approach for building VR applications is the prin-

iple of virtual rooms. They serve as a space for interaction be-

ween users and with the VE. A private VR room may contain con-

dential information and interactions between users with a height-

ned privacy level than ordinary chat or video call. Users are im-

ersed into this virtual world and are expected to lose awareness

hat they are still using a computer program. Their interactions are

nrestrained. As the environment gets closer to what they know

rom the real world, VR users assume that the physical world’s so-

ial and privacy rules apply. Thus, users would not expect an in-

isible intruder (an invisible virtual Peeping Tom) in their real liv-

ng room, watching their activities and every move. This intrusion

an disturb people’s privacy on a very personal level, compared to

rior security work that has focused on non-immersive, or tradi-

ional computing environments.

M. Vondráček, I. Baggili, P. Casey et al. Computers & Security 127 (2023) 102923

t

c

v

V

v

a

i

a

w

c

V

t

l

t

l

2

q

c

w

b

o

f

t

i

s

i

i

W

S

i

t

t

t

a

a

Fig. 3. The generic model of MitR attack against any VR application/platform de-

fined as a proof tree, tree notation based on (Kishimoto et al., 2012). The detailed

description is provided in Equation (1) .

f

i

S

M

M

w

R
P

A

U
A

C
H

V
V
C
K
R
I

3

a

h

s

s

n

r

(

t

t

We defined the novel concept of MitR attack as follows. Assume

hat legitimate users communicate in a private virtual room. They

an move in the space, see actions of their avatars, and hear their

oices. The attacker would leverage security vulnerabilities in the

R platform (or in the VE) to gain unauthorized access to a pri-

ate VR room. The attacker would then manage to stealthily move

round the virtual room while being invisible to everyone else in

t. The concept of MitR means that the attacker is able to hear

nd see everything happening inside an otherwise private VR room

ithout a victim’s knowledge or authorization.

The concept of a VR Worm we propose is based on common

haracteristics of computer worms, but with novel implications for

Es. A VR worm infects users of VR who become its hosts. It can

hen spread among users sharing the same virtual room. This may

ead to a pandemic-like situation inside virtual spaces. We illus-

rate why users should be careful who they meet in VR. We out-

ined our threat/adversary model in Section 3 .

.2. Formal modeling

The conducted study is motivated by the following research

uestions:

• Is a MitR attack possible/feasible in existing VR applications?

• Can malicious viruses/worms spread in VR like diseases in

real life?

• Can physical world attack techniques have new consequences

in VR?

The MitR attack along with the VR worm we propose are novel

oncepts specific to security and privacy in VR applications. In our

ork, we further identify general prerequisites as main building

locks for a successful realization of these attacks. A successful

utbreak of VR worms and their botnets throughout any VR plat-

orm must meet the following requirements:

• Vulnerable persistent environment in a victim’s VR applica-

tion to host malicious code of a worm,

• Functionality for duplication of a worm to infect other vul-

nerable victims and spread through the platform,

• Communication channel for a Command & Control (C&C) pro-

tocol to allow control and monitoring of infected zombies in a

botnet.

To perform a MitR attack in a VR application, the attacker has

he following goals:

• Access targeted room by exploiting vulnerabilities in authenti-

cation & authorization mechanisms or by obtaining credentials.

• Connect to a multimedia protocol using RE techniques.

• Hide presence from User Interface (UI) and VE by exploiting

lack of validation and verification in the protocol and vulnera-

bilities in application’s UI.

When a VR application includes insecure code implemented

n other software, it inherits these security risks. For example, in

ome cases, it could be possible to employ knowledge of attack-

ng techniques used against network-enabled multimedia stream-

ng applications relying on signaling channels over the Secure

ebSockets (WSS) protocol, amongst other things demonstrated in

ection 4 .

We further detail MitR, it’s goals, and requirements formally

n Figure 3 and associated Equation (1) . The successful realiza-

ion of the attack against virtual room r of targeted VR applica-

ion/platform, using communication & multimedia sharing protocol

p, authentication & authorization mechanism aa , and the informa-

ion is presented to users via UI component ui , can be specified as

 formula MIT R (p, ui, aa, r) . Therefore, when we ask whether MitR

ttack is possible for a selected VR application t , we are looking
4
or model M t and valuation v such that M t |� MIT R [v] (M t sat-

sfies MIT R with v). These formal definitions are later utilized in

ection 4.8 .

IT R (p, ui, aa, r) = R (r) ∧ P (p)
∧ AA (aa, r) ∧ UI(ui)
∧ AR (aa, r)
∧ CM(p)
∧ HP (ui, p)

IT R (p, ui, aa, r) = R (r) ∧ P (p)
∧ AA (aa, r) ∧ UI(ui)
∧ (V (aa, r) ∨ C(r))
∧ (K(p) ∨ RE(p))
∧ (¬ I(p) ∧ V (ui))

(1)

here:

(x) = x is a VR room instance
(x) = x is communication & multimedia sharing protocol

of VR application/platform

A(x, y) = x is authentication & authorization mechanism for
a room y

I(x) = x is UI component of VR application/platform

R(x, y) = sub-goal to access room y with authentication

& authorization mechanism x
M(x) = sub-goal to connect multimedia with protocol x
P(x, y) = sub-goal to hide presence in room from UI

component x and from VE via y
(x) = x is vulnerable
(x, y) = x in combination with y is vulnerable
(x) = possession of credentials for x
(x) = details of x are publicly known

E(x) = successful Reverse Engineering (RE) of x
(x) = integrity checks for x are performed correctly

. Threat/adversary model

The underlying hypothesis of the proposed model is that the

ttacker seeks to both expand adversary controlled resources and

arvest information from the target. Specifically, materials pre-

ented and conversations held while in private rooms. The adver-

ary does not require an environment or resources atypical of a

ormal user. The attack is crafted such that the adversary does not

equire prior knowledge of the target nor special network topology

 Figure 4). For testing purposes, we include the assumption that

he target is also VR capable and has or will launch the applica-

ion.

M. Vondráček, I. Baggili, P. Casey et al. Computers & Security 127 (2023) 102923

Fig. 4. Basic scenario for attacking the Bigscreen application. Alice and Bob are le-

gitimate users of the application, each in a different location. Mallory is an attacker

with maliciously patched Bigscreen application (Figure 9). Trudy is an attacker with

developed C&C server capable of attacking Bigscreen users and controling created

botnet (Section 4.6). Mallory and Trudy aim at users of the application and do not

attack Bigscreen servers (Figure 6, Figure 10).

4

t

B

p

C

(

e

y

t

w

b

s

4

p

Table 1

Tools for Security Analysis.

Purpose Software

network traffic analysis mitmproxy, wifimitm, Scapy, Wireshark, Netfox

Detective, NetworkMiner, tools

from Scarfone et al. (2008), A-1

RE of C# and .NET

environment

de4dot, Reflexil, ILSpy, dnSpy, JetBrains dotPeek,

Progress® Telerik® Just Decompile

RE and deobfuscation

of JS

JS Beautifier, JSNice, Prettier, Packer (unpacker) by

Dean Edwards, de4js, ESDeobfuscate, JStillery,

JSDetox, dCode Javascript Unobfuscator,

JsArrayRefDeobfuscator (jsard)

Table 2

Software Versions of Virtual Reality Applications and Devices.

Application / Device Software Version

Bigscreen 0.34.0

Oculus App 1.36.0.215623

Steam 1549129917

SteamVR 1.2.10

Vive Headset MV HTC 1462663157

Vive Base HTC V2-XD/XE (x2) 436

Vive Controller MV HTC (x2) 1533720215

Rift Headset 709/b1ae4f61ae

Rift Sensor (x2) 178/e9c7e04064ed1bd7a089

Rift Touch (x2) f3c65f7a5f

h

T

m

t

4

v

f

c

m

v

t

p

c

a

4

o

w

f

n

i

1 https://bigscreenvr.com/careers/ .
2 https://blog.bigscreenvr.com/ .
. Case study – attacking Bigscreen

We provide a case study that shows a concrete demonstra-

ion of our MitR attack and VR Worm carried out against the

igscreen application. The analyzed technologies are widely em-

loyed in other VR applications and platforms (e.g. Unity engine,

#, .NET, UI layer using JS & jQuery, WebRTC, HTTP, WebSockets

WS), Transport Layer Security (TLS)). It is possible to generalize

valuation of Bigscreen to VR systems broadly. Our security anal-

sis included methods of vulnerability research and penetration

esting, it can be categorized as:

1. External ,

2. Black box ,

3. Non-destructive ,

4. Ethical , and

5. In a controlled environment .

The security analysis is broken down into several phases,

hich could be mapped to corresponding stages defined

y Scarfone et al. (2008) with some adjustments. The adjusted

ecurity phases we propose are characterized as follows:

• Phase I – Reconnaissance Examine Bigscreen and gather pub-

licly available information (detailed in Section 4.2).

• Phase II – Laboratory Setup & Tool Sets Prepare laboratory

equipment and software tools based on identified areas of in-

terest (described in Section 4.3).

• Phase III – Security Analysis Assess overall security with

network traffic analysis, penetration testing, RE of used pro-

tocols and the Bigscreen desktop application (presented in

Section 4.4).

• Phase IV – Exploit Development With identified security flaws,

craft exploits to assess the impact of vulnerabilities (highlighted

in Section 4.5).

• Phase V – Tool Construction Aggregate discovered attacks

and exploits into a comprehensive attacking tool (outlined in

Section 4.6).

• Phase VI – Testing Evaluate the success rate according

to defined scenarios (Section 4.7). Summarize our results

(Section 4.8) and responsibly disclose findings to vendors

(Section 4.9).

.1. Scenarios

We defined multiple scenarios for maintaining a systematic ap-

roach during analysis and testing. Scenarios refer to actions of
5

ypothetical legitimate users (Alice, Bob) and attackers (Mallory,

rudy), as in Figure 4 . Individual steps are available in supplemental

aterials as Appendix A. These scenarios cover the common func-

ionalities offered by the Bigscreen application:

1. Passive stay in lobby,

2. Creation of a public room,

3. Creation of a private room,

4. Conducting a private meeting, and

5. Transitioning between rooms.

.2. Phase I – reconnaissance

We focused on Open Source Intelligence (OSINT) that could re-

eal inner parts of the Bigscreen system. We analysed job offers

rom the Bigscreen company and found out how does application’s

odebase look like. 1 Furthermore, Bigscreen’s blog contained infor-

ation about the application’s updates and posts about their de-

elopment. 2

Our previous forensic research (Yarramreddy et al., 2018) iden-

ified several artifacts left on the hard drive by the Bigscreen ap-

lication. We uncovered that the application’s UI elements were

ontrolled by JS (with jQuery) in a limited built-in web browser

nd the UI had bindings to the application’s core layer.

.3. Phase II – laboratory setup & tool sets

The testing and analysis described in the study was carried

ut in a controlled laboratory environment similar to our previous

ork (Yarramreddy et al., 2018). The tools and equipment useful

or the analysis are listed respectively in Table 1 and Table 2 . The

etwork topology used for experimentation purposes is depicted

n Figure 5 .

https://bigscreenvr.com/careers/
https://blog.bigscreenvr.com/

M. Vondráček, I. Baggili, P. Casey et al. Computers & Security 127 (2023) 102923

Fig. 5. Initial Experimental Setup.

Fig. 6. The two identified paths of forged signaling messages in an attack over

the network. See Section 4.4 for details. Supplemental materials present example

payloads in Appendix H and network traffic analysis in Appendix C.

Fig. 7. Diagram of developed exploit to download and execute malware on

Bigscreen victim’s computer. See Appendix H in supplemental materials for exam-

ple payloads.

4

e

m

fi

u

L

v

d

w

s

s

t

U

s

b

m

C

t

m

(

r

C

B

f

f

b

U

A
n

(

m

u

W

m

W

t

t

t

d

e

c

t

g

n

c

m

c

r

a

(

t

l

t

s

p

p

f

t

4

c

B

l

t

.4. Phase III – security analysis

Most of the traffic generated by the Bigscreen application was

ncrypted. This was circumvented using transparent proxy via

itmproxy , where a temporary Certificate Authority (CA) was con-

gured and trusted by the VR workstations. This technique allowed

s to decrypt traffic protected by TLS.

We managed to RE and decompile the application and Dynamic

ink Libraries (DLLs) into corresponding logic in C#, which re-

ealed the inner structure of the application. Figure 7 presents a

iagram of the developed exploit to download and execute mal-

are on victims computer. In fact, the Bigscreen application con-

ists of several layers and communicates over the network with its

ervers and peer users in the room. The attacker sends a payload to

he servers which distribute it to users. The payload arrives to the

I layer where it causes a Cross-site Scripting (XSS) attack via un-

afe jQuery methods (Section 5.4). The attack propagates through

indings from the UI to the core layer. Application core then calls a
6

ethod from Unity with a malicious payload which causes Remote

ode Execution (RCE). Finally, the attack escapes from the applica-

ion, downloads malware and executes it.

We found out that DLL are loaded without integrity checks. This

ade unauthorized patching of the Bigscreen application possible

i.e. Application Crippling).

The application’s desktop UI was implemented as JS envi-

onment which communicates with the C# core layer via JS-

function bindings. This UI layer also communicates with

igscreen’s servers using WSS. Extracted JS source code was ob-

uscated and minified, but we managed to implement a deob-

uscator for this format (Section 5.5). During analysis of JS-C#

indings, we discovered a critical security vulnerability in the C#

nity scripting Application Programming Interface (API). A method

pplication.OpenURL(url) is dangerously capable of run-

ing programs, opening folders and files on the host computer

see Sections 5.1 and 5.2 and Listing 12 and 17 in supplemental

aterials).

RE led to an understanding of the signaling protocol which was

sed to manage VR rooms and establish multimedia P2P channels.

SS channels were observed to use encryption but were funda-

entally flawed due to a lack of authentication & authorization.

e discovered it is possible to send a specially crafted message to

he signaling server which is forwarded to either the room’s par-

icipants or the application’s lobby. At the network message level,

he attacker can set arbitrary values to some fields. The application

id not perform proper sanitization of data received through the

ncrypted signaling channel from the signaling server. The appli-

ation naively trusted its signaling server, which can forward un-

rusted messages. The received malicious payloads are then propa-

ated to the UI layer resulting in remote XSS over a signaling chan-

el. Attacking the lobby can affect all users of the Bigscreen appli-

ation worldwide.

Figure 6 presents the two paths we identified to forge signaling

essages in an attack over the network. On path A, the attacker

reates a new public room with a payload in the room name,

oom description, or room category (room-create). Bob requests

 list of all public rooms which causes XSS in his application

 room-latest), this is applicable to all users in the lobby. A vic-

im can also request details about a selected room which also de-

ivers the XSS payload (roomstate). On path B, the attacker sets

he payload as a username and joins Bob’s room (room-join). As

oon as the attacker joins the room, XSS is executed in Bob’s ap-

lication (user-joined).
Selected payloads of Bigscreen XSS attacks are available in sup-

lemental materials as Appendix H. Please see (Vondráček, 2019)

or a complete procedure, other discovered vulnerabilities, and

echnical details.

.5. Phase IV – exploit development

In order to know the severity of the identified issues, we fo-

used on ways of how malicious hackers could possibly abuse the

igscreen application and put its users at risk. The following high-

ights significant achievements while the full set of exploits and

echnical details are available in Vondráček (2019) .

• Eavesdropping victim’s screen and microphone: Forged sig-

naling message can override victim’s multimedia sharing over

the network, as depicted in Figure 6 . Our PoC WebRTC applica-

tion was able to covertly connect to legitimate Bigscreen appli-

cations without the user’s knowledge.

• Discovery of private rooms: XSS payload in a spoofed signal-

ing message can force the victim to leak the private room ID to

the attacker’s C&C server.

• Download & execute malware on victim’s computer: Secu-

rity flaw in Unity scripting API can be exploited to remotely run

M. Vondráček, I. Baggili, P. Casey et al. Computers & Security 127 (2023) 102923

Fig. 8. Visualization of the main parts of the C&C tool. Zombie control and Room

control can be opened and closed for each controlled zombie and room. Each room

can have multiple Room participants .

4

c

i

h

t

e

a

c

F

c

r

c

i

c

o

a

i

c

b

e

4

(

t

V

G

function worm() {

/* payload here */ ;

NAME=’<sc’+’ript>’+worm. toStr ing ()+

’;worm();</sc’+’ript>John’ ;

} ;

worm() ;

Listing 1. Minimal and simplified example of self-replicating XSS payload in vari-

able NAME which can be used for the VR worm.

c

e

m

4

o

i

s

t

v

l

p

(

t

H

w

b

w

programs, open folders and files. The attack downloads and ex-

ecutes malware, as illustrated in Figure 7 .

• Botnet and VR worm spreading through the whole Bigscreen

community: Combination of several discovered vulnerabili-

ties allowed realization of the VR worm, implementation is de-

scribed in Section 4.8 .

• Man-in-the-Room attack: A new cyber attack related to VEs

was successfully realized during this research (see details in

Section 4.8).

.6. Phase V – tool construction

To understandably demonstrate our findings to the scientific

ommunity, we designed and implemented a user friendly attack-

ng tool. It can execute individual attacks and serve as C&C (bot

erder), controlling the entire botnet of infected Bigscreen applica-

ions. It also includes our PoC VR worm. Malware infection can be

xecuted with a single button.

The attacker can target any public or discovered private room

nd take control over the Bigscreen application. Dashboard can

ontrol multiple rooms at the same time using their Room control .

igure 8 highlights our C&C tool where Zombie control and Room

ontrol can be opened and closed for each controlled zombie and

oom. Chat messages are shown in Room chat panel. The attacker

an eavesdrop victim’s screen and microphone using Room partic-

pant panel. The tool monitors zombies and each of them can be

ontrolled with corresponding Zombie control . We have developed

ur custom C&C protocol to control zombies from the C&C server.

To demonstrate possible malware outbreak, we developed

 demonstrative malware, which does not cause any harm to an

nfected testing computer. It is used only to demonstrate that dis-

overed attack could download and execute malware.

Implemented demonstrative attacking tool, including the dash-

oard, C&C server, C&C relay server, and payloads to execute all

xploits (Section 4.5) is available online for research purposes. 3

.7. Phase VI – testing

Testing was carried out according to defined scenarios

 Section 4.1). Note, that experiments were carried out in a con-

rolled laboratory environment. Attacks were limited to users and

R rooms created in our laboratory, as described in scenarios.

oals of the testing were mainly to:
3 https://github.com/unhcfreg/VR-MitR-C2-Bigscreen .

7
• Describe critical impact of discovered vulnerabilities in real-

world situations (scenarios).

• Validate success rate of individual attacks/exploits.

• Validate correct implementation of developed attacks in our

C&C server.

All tested attacks required no action from the victim (zero-

lick attacks) . Individual detailed steps how all test cases were

valuated are in supplemental materials as Appendix B and sum-

arized in Table 4 .

.8. Major findings

We conducted a security and forensic analysis including meth-

ds of traffic analysis, vulnerability research, penetration test-

ng, and RE of the application and its network protocols. In this

ection, we summarized the main discovered vulnerabilities of

he Bigscreen application (see Table 3). Opportunities in discovered

ulnerabilities were then seized to create practical exploits high-

ighted in Table 6 . Advanced attacks require chaining multiple ex-

loits (Table 5). Details are available in Vondráček (2019) .

We now explain how requirements of general attack concepts

 Section 2.2) were fulfilled in the case of Bigscreen. We were able

o use well-known techniques (e.g. XSS) for individual small steps.

owever, when chained together, they enabled these novel attacks

ith new and critical implications for VR users.

Requirements for a successful outbreak of VR worms and their

otnets in Bigscreen were fulfilled as follows:

� Vulnerable persistent environment: Modifications by XSS

attack can persist until application reset. Victims can, there-

fore, propagate the payload further.

� Functionality for duplication of a worm: An attacker can

modify the victim’s name to also include an XSS payload,

resulting in any future contact with other users to dissem-

inate the payload and also modify their username, further

circulating the attack (Figure 10). The principle of the worm

is illustrated in Listing 1 .

� Communication channel: When the victim gets infected by

the worm, it becomes a zombie, reports to our C&C Server

via WS established in context of UI layer (JS), and awaits

commands. With this exploit, it is possible to create a botnet

of computers of the whole Bigscreen community and control

them from the attacker’s C&C Server.

The MitR attack goals associated with the Bigscreen case study

ere achieved as follows:

� Access targeted room: Remote XSS through signaling chan-

nel leaked confidential Room IDs of private rooms. Creden-

tials for public rooms were publicly available.

� Connect to multimedia protocol: We patched some

DLLs loaded by the Bigscreen application (no integrity

checking, Table 3) to change selected behavior. Our PoC

patched Bigscreen application could connect with legitimate

Bigscreen applications. This also gave us complete control

over one end of audio/video/data streams (Figure 9).

https://github.com/unhcfreg/VR-MitR-C2-Bigscreen

M. Vondráček, I. Baggili, P. Casey et al. Computers & Security 127 (2023) 102923

Table 3

Main Vulnerabilities of the Application.

Vulnerability Context Severity

RCE via API call to Application.OpenURL Unity engine High

XSS in user name, room name, room description , and room category UI layer High

Patching DLL without integrity check DLLs High

Lack of integrity , receiving data without sharing any VR state WebRTC High

Lack of authentication , connection from a custom application Signaling channel High

Lack of authentication , connection from a custom application WebRTC Medium

Information leak via RE of assemblies Application core Medium

Information leak via RE of obfuscated and minified JS source code UI layer Low

Table 4

Test Results Based on Initial Scenarios.

Scenario Test result

Passive stay in the lobby Attack successful

Created public room Attack successful

Created private room Attack successful

Private meeting Attack successful

Transition between rooms Attack successful

Table 5

Exploits Based on Combination of Vulnerabilities.

Attack UI XSS Unity RCE Patch Severity

Man-in-the-Room. � × � High

VR Worm. � × × High

Download & run malware. � � × High

Fig. 9. The attacker Mallory uses patched (application crippling) version of the ap-

plication which does not send VR state to other room participants and which also

uses forged signaling messages with XSS payloads to hide traces of Mallory’s pres-

ence in the room.

Fig. 10. Sequence diagram of of initial VR worm infection (in Alice’s room) and

propagation from one user to another when they meet in VR room (in Bob’s room).

s

p

t

E

v

A

R

� Hide presence: XSS payloads altered the victim’s UI. Com-

bination of vulnerabilities (Figure 9, Table 5) allowed to by-

pass sharing of attacker’s VR state. Victim had no data to
render – the attacker was invisible in VE. The attacker could

Table 6

Selection of Exploits Based on Forged Signaling Messages wit

Category Attack/Exploit

Botnet Control infected applications fr

VR Worm Spread a worm infection throu

JS RCE Remotely execute any JS code

Privacy violation Discover private rooms.

Privacy violation Eavesdrop screen and microph

Privacy violation Persistently eavesdrop victim’s

Impersonation Spoof chat messages.

Privilege escalation Set selected user as room adm

Denial of Service (DoS) Ban selected victim until resta

8
see victims in VR, see screens of their computers, hear their

audio/microphone (Figure 11).

We can now employ the formal definition from Section 2.2 to

pecify how MitR attack was successful in the Bigscreen ap-

lication. Formula MIT R (p, ui, aa, r) represents a successful at-

ack. For model M Bigscreen , we consider predicate symbols from

quation (1) defined as follows, then we define valuations v 1 and

 2 :

R = { (”any public room ”) ,
(”pri v ate room seen by in fected user ”) ,
(”unseen pri v ate room ”) }

P = { (”propr ietar y ov er W ebRT C & W SS ”) }
A = { (”publ ic id knowl edge ”,

”any public room ”) ,
(”con f id ential id knowled ge ”,
”pri v ate room seen by in fected user ”) ,
(”con f id ential id knowled ge ”,
”unseen pri v ate room ”) }

UI = { (”limited JS ”) }
V = { (”limited JS ”) }
V = { (”con f id ential id knowled ge ”,

”pri v ate room seen by in fected user ”) }
C = { (”any public room ”) }
K = {}
E = { (”propr ietar y ov er W ebRT C & W SS ”) }
I = {}

(2)
h XSS Payloads.

Severity

om C&C server. High

gh the whole Bigscreen community. High

in the UI layer of Bigscreen. High

High

one. High

 chat, even if they go to another room. High

Medium

in. Medium

rt. Low

M. Vondráček, I. Baggili, P. Casey et al. Computers & Security 127 (2023) 102923

Fig. 11. Our novel Man-in-the-Room attack. Figure on the left shows the view of the user Bob, figure on the right shows attacker Mallory who is invisible while in the room

with Bob. The attacker uses malicious version of the application, as shown in Figure 9 . Details are available in our video demonstration 4 .

Table 7

Overview of our FOSS contribution to state of the art of automated vulnerability detection & prevention.

Project Goal

CodeQL Signature for Unity OpenURL Vulnerability Detect OpenURL RCE vulnerability in any other software built with Unity engine.

Unity OpenURL Exploit Demo Raise VR developers awareness about OpenURL RCE vulnerability.

jQuery XSS Static Analyzer Detect XSS in UI layer or in any other web applications.

Dataset of Unsafe jQuery Method Calls Evaluate our XSS analyzer and compare it with ESLint.

JavaScript Array Ref Deobfuscator Revert Array Ref obfuscation format of JS.

SlimIt Library Fork Improve JS parsing features for (not only) our XSS analyzer and deobfuscator.

v

v

M

a

4

g

s

H

v

w

a

b

w

c

t

o

t

a

(

g

5

&

s

p

i

p

m

5

(

G

C

a

w

t

a

e

U

s

p

l

t

c

a

a

e

5

f

p

n

t

J

f

i

4 https://youtu.be/N _ Z3mfzLZME .
5 https://github.com/mvondracek/Unity- OpenURL- Exploit- Demo/tree/main/

CodeQL .
6 https://lgtm.com/ .
7 https://github.com/mvondracek/Unity- OpenURL- Exploit- Demo .
 1 : p �→ ”propr ietar y ov er W ebRT C & W SS ”
ui �→ ”limited JS ”
aa �→ ”publ ic id knowl edge ”
r �→ ”any public room ”

(3)

 2 : p �→ ”propr ietar y ov er W ebRT C & W SS ”
ui �→ ”limited JS ”
aa �→ ”con f id ential id knowled ge ”
r �→ ”pri v ate room seen by in fected user ”

(4)

When we evaluate the formula with v 1 and with v 2 , we see that

 Bigscreen |� MIT R [v 1] and M Bigscreen |� MIT R [v 2] . Therefore, MitR

ttack is possible for Bigscreen.

.9. Mitigations & suggestions

We provided related vendors with suggested mitigation strate-

ies. Both companies used these measures to remedy the is-

ues (Caldwell, 2019 ; Shankar, 2019 ; Unity Technologies, 2019a,b).

owever, our mitigation strategy may be applicable to other VR

endors to improve their security posture.

In the case of the Bigscreen application, discovered weaknesses

ere caused by shortcomings & vulnerabilities in authentication,

uthorization, encryption, data sanitization, integrity checking, or

y a critical security vulnerability in the integrated 3rd party soft-

are (Unity engine). Individual flaws with smaller impact were

hained together resulting in attacks with critical impact. As for

he Unity Scripting API, discovered security vulnerability was based

n unrestricted, undocumented, dangerously powerful, and unin-

ended behavior of API method.

Furthermore, developers can detect and prevent such vulner-

bilities even in any other software by adopting our FOSS tools

 Section 5). For more details about specific mitigations and sug-

estions, please see Appendix I in enclosed supplemental materials .

. Improving the state-of-the-art of VR vulnerability detection

 prevention

We implemented a series of analytical tools and vulnerability

ignatures (Table 7). We opted to publish them as FOSS to im-

rove the state-of-the-art of vulnerability detection & prevention

n VR. MitR attack exploits vulnerabilities that could have been
9
revented. Developers and scientists can now use our tools to

ake secure VR software.

.1. CodeQL signature for unity openURL vulnerability

CodeQL allows for powerful Static Application Security Testing

SAST) including taint analysis and data flow analysis. For example,

itHub uses it for batch scanning for vulnerabilities. We defined a

odeQL query and a build configuration which can detect vulner-

bilities in Unity’s OpenURL method. This is the vulnerability that

e discovered and responsibly disclosed. The vulnerability signa-

ure is publicly available at the repository 5 .

However, CodeQL database creation is currently available only

s a per-request service on LGTM

6 . In the case of C# projects, Cod-

QL supports Microsoft Visual Studio builds with msbuild, while

nity-based projects can be compiled with Unity’s own build

ystem. Unfortunately, CodeQL and LGTM lack direct support for

rojects based on the Unity build system and at the time the build-

ess parser did not have UnityEngine API available. To leverage

he power of CodeQL and achieve successful build by LGTM, we de-

ided to use API placeholders for the UnityEngine namespace,

s the application compiled by LGTM is intended only for CodeQL

nalysis. This way, Unity-based projects can be built in LGTM to

xtract information for CodeQL queries.

.2. Unity OpenURL exploit demo

We implemented an example vulnerable Unity application to

ully demonstrate all the possible cases how OpenURL can be ex-

loited. Our aim is to raise developers’ awareness about this vul-

erability. The demo exploit application is available in our reposi-

ory 7 .

Example of exploiting openLink function inside Bigscreen’s

S UI, which subsequently calls Application.OpenURL method

rom Unity engine is available in supplemental materials as List-

ng 12 and 17.

https://youtu.be/N_Z3mfzLZME
https://github.com/mvondracek/Unity-OpenURL-Exploit-Demo/tree/main/CodeQL
https://lgtm.com/
https://github.com/mvondracek/Unity-OpenURL-Exploit-Demo

M. Vondráček, I. Baggili, P. Casey et al. Computers & Security 127 (2023) 102923

Table 8

Confusion matrix for evaluation of eslint tool with the dataset.

Context Awareness Taint & Data Flow
P N P N

eslint
P 0 0 0 0
N 72 291 19.83% 12 12 50%

0% 0% 0% 0%

5

o

e

T

a

m

a

p

o

n

t

f

i

T

i

d

a

5

t

(

a

n

a

w

a

C

a

s

t

T

r

(

E

o

T

Fig. 12. Algorithm of our analyzer to detect vulnerable jQuery

method calls in JS source code. Please note that conditions are sep-

arated here for a better readability.

Require: source = Javascript source code

Ensure: detections = vulnerable jQuery method calls

1: v ul nerabl e = static list of vulnerable methods

2: detections ← []

3: tree ← parse(source) /* abstract syntax tree */

4: for all node in tree do /* depth-first search (DFS) */

5: if node is a method call and node has arguments then

/* i.e. a possible setter method */

6: access ← nod e.id enti f ier

7: if access.node is a jQuery selector expression then

/* e.g. $("#selector") */

8: if (access is a dot access and access.identi f ier. v alue is in

v ul nerabl e) then /* e.g. .html */

9: insert node into detections

/* e.g. $("#selector").html(…) */

10: else if (access is a bracket access and access.expr is in

v ul nerabl e) then /* e.g. ["html"] */

11: insert node into detections

/* e.g. $("#selector")["html"](…) */

12: end if

13: end if

14: end if

15: end for

16: return detections

Table 9

Confusion matrix for evaluation of eslint tool with jquery-unsafe plugin with

the dataset.

Context Awareness
P N

eslint
+ jquery-unsafe

P 21 7 75.00%
N 51 284 15.22%

29.17% 2.41%

Taint & Data Flow
P N

eslint
+ jquery-unsafe

P 0 7 0%
N 12 5 70.50%

0% 58%

Table 10

Confusion matrix for evaluation of our jQuery XSS Static Analyzer with the dataset.

Context Awareness Taint & Data Flow
P N P N

jqxss
P 72 0 100% 0 12 0%
N 0 291 0% 12 0 100%

100% 0% 0% 100%

c

s

fl

.3. Dataset of unsafe jQuery method calls

To evaluate our analyzer (Section 5.4) and to compare it with

ther tools, we created a dataset 8 . It consists of nearly 400 differ-

nt samples of code and focuses on unsafe jQuery method calls.

he dataset was created as a combination of static code samples

nd samples generated from templates created for each analyzed

ethod. “By design, any jQuery constructor or method that accepts

n HTML string – jQuery() , .append() , .after() , etc. – can

otentially execute code. This can occur by injection of script tags

r use of HTML attributes that execute code.” (OpenJS Foundation,

.d.)

Samples are organized into two groups:

1. Context Awareness,

2. Taint & Data Flow Analysis.

The first group of samples includes code with various contexts,

herefore trivial tools without context-aware parsers are eliminated

rom comparison. The second group includes code where the abil-

ty to perform taint analysis and data flow analysis is required.

his means the tool should determine how malicious data are san-

tized on paths from sources to vulnerable sinks . It should also

escribe how malicious data are propagated through expressions

cross these sources and sinks .

.4. jQuery XSS static analyzer

The XSS in Bigscreen’s UI layer was caused by unsafe Hyper-

ext Markup Language (HTML) manipulation with jQuery methods

 Section 4.4). HTML should be manipulated in a safe way using

lternative approaches to avoid such software development weak-

esses.

To prevent such vulnerabilities, we implemented a static an-

lyzer for JS which can detect use of unsafe jQuery methods

hich are vulnerable to a XSS attack. This analyzer is available as

 Command-line Interface (CLI) program, but also as a plugin for

oala static analysis system

9 . Plugins for Coala are called bears 10

nd this jQuery XSS Static Analyzer is released as JSjQueryXssUn-

afeBear . For example, it can be used as part of SAST stage of Con-

inuous Integration (CI) by developers to make their software safer.

he analyzer is a FOSS and available from its repository 11 . Its algo-

ithm is presented in Figure 12 .

To evaluate our tool, we use the above-described dataset

 Section 5.3). We also use this dataset to compare our tool with

SLint 12 and also ESLint with jquery-unsafe plugin

13 . The results we

btained from the evaluation of the involved tools are illustrated in

able 8 , Table 9 , and Table 10 .
8 https://github.com/mvondracek/jQuery-XSS/tree/master/dataset .
9 https://coala.io/ .

10 https://github.com/coala/coala-bears .
11 https://github.com/mvondracek/jQuery-XSS .
12 https://eslint.org/ .
13 https://github.com/cdd/eslint- plugin- jquery- unsafe .

e

a

s

t

u

s

t

t

10
We can see that ESLint lacks the ability to detect jQuery unsafe

alls (Table 8). ESLint with a plugin cannot perform taint analy-

is or data flow analysis (Table 9). It failed in all cases when data

ow analysis was required to detect jQuerry access through sev-

ral variables. In cases where taint analysis was required, because

n unsafe method was called with safe/sanitized value, it scored

ome true negatives. However, these true negatives are caused by

he fact that the tool does not know all unsafe methods. When an

nsafe method unknown to it was tested, the code was marked as

afe not because of understood sanitization, but because the tool

hinks the tested method is safe. The tool has many false nega-

ives as it cannot recognize more complex ways of calling unsafe

https://github.com/mvondracek/jQuery-XSS/tree/master/dataset
https://coala.io/
https://github.com/coala/coala-bears
https://github.com/mvondracek/jQuery-XSS
https://eslint.org/
https://github.com/cdd/eslint-plugin-jquery-unsafe

M. Vondráček, I. Baggili, P. Casey et al. Computers & Security 127 (2023) 102923

m

i

(

j

t

w

c

o

d

p

w

c

r

(

m

R

R

(

a

5

o

a

n

u

o

a

t

w

t

r

5

b

A

s

d

a

n

n

t

M

w

r

6

i

a

i

t

p

t

Table 11

Userbase.

Software Reach

Bigscreen over 500,000 users 18

Unity 3,000,000,000 devices 19

o

a

t

f

w

a

c

d

t

d

p

a

m

c

o

v

a

i

p

g

i

i

s

i

v

t

A

m

t

(

c

a

a

c

h

m

t

i

t

a

R

7

w

p

t

l

w

a

ethods, but also because its internal list of unsafe methods is

ncomplete. On the other hand, we can see some false positives

 Table 9), where it incorrectly detected method calls not related to

Query.

Our analyzer utilizes power of a context-aware parser and de-

ailed knowledge of unsafe jQuery methods (Figure 12). This way

e managed to eliminate false positives and false negatives in the

ontext-aware part of the dataset (Table 10). On the other hand,

ur tool does not aim to perform taint or data flow analysis. We

ecided that these techniques were out of scope during the im-

lementation. Obviously, this sets some limitations for our tool. As

e can see, it failed in taint & data flow section of the dataset be-

ause it does not implement the required techniques. The obtained

esults show ESLint with a plugin performs better than our tool

 Table 9). In fact ESLint with a plugin is not aware of all unsafe

ethods, therefore it flags unknown ones as safe.

Our tool reaches 100% True Positive Rate (TPR), 0% False Positive

ate (FPR), 100% Positive Predictive Value (PPV), 0% False Omission

ate (FOR), for part of the dataset focused on context awareness

 Figure 12). The dataset, test scripts, and results of the evaluation

re publicly available 14 .

.5. JavaScript array ref deobfuscator

Our deobfuscator is a CLI program which can revert Array Ref

bfuscation format of JS. This format is characterized by a global

rray in the beginning of the file containing all values and method

ames used in the original source code. Obfuscated code then

ses references to this global array instead of literals and meth-

ds. This makes manual analysis of the code very time-consuming

s production code can easily contain thousands of items in men-

ioned global obfuscation array. For example, UI layer of Bigscreen

as obfuscated in this format. We shared our deobfuscator with

he professional community, and published it as FOSS in our

epository 15 .

.6. SlimIt library fork

The abovementioned deobfuscator and static analyzer need to

e able to correctly parse JS source code and build corresponding

bstract Syntax Tree (AST). Use of a context-aware parser is es-

ential for both minimizing false positives of static analysis, and

elivering correct deobfuscation.

We decided to integrate the SlimIt library 16 . It primarily offers

 JS minifier, but also serves as a library with a JS parser. Unfortu-

ately, the SlimIt parser was missing some features that our tools

eeded. So we decided to create our own fork 17 and extend it with

he needed functionality. The original library was available under

IT license, and our fork is also available under MIT license and

e plan to suggest merging updates from our fork to the main

epository.

. Discussion & conclusion

With respect to our research questions, we showed with exper-

ments that MitR attack is possible in an existing VR application

nd that a VR Worm can spread between VR users like a disease

n real life. We showed that with new mediums, well-known attack

echniques can evolve into new attacks with a novel impact. Com-

ared to conventional applications, we posit that VR vulnerabili-

ies are more privacy invasive. New VR systems collect a plethora
14 https://github.com/mvondracek/jQuery-XSS/tree/master/dataset .
15 https://github.com/mvondracek/JsArrayRefDeobfuscator .
16 https://slimit.readthedocs.io/en/latest/ .
17 https://github.com/mvondracek/slimit .

11
f data such as a physical room structure, eye movements, hand

nd body movements etc. The technology presents new challenges

hat users, developers, and companies are less experienced in, and

or the users, it may be difficult for them to imagine that virtual

orlds also present a new platform for spreading malware.

There aren’t many platforms in which users may be educated

bout these new technologies. Most of the information people see

ome from companies selling VR products, who naturally do not

raw attention to potential privacy and security risks. In addition,

he products they bring to market are often released while still un-

er development. We reacted to this by bringing our research to

ublic attention in global media (Vondráček, 2019, p. 83). We man-

ged to publish the results together with explanation and recom-

endations for common users and the scientific and professional

ommunities at large. Our hope is that it will help raise awareness

f VR, its strengths and also its associated dangers.

The Bigscreen company accepted all recommendations we pro-

ided in the responsible disclosure and implemented appropri-

te security measures so that the described attacks may be mit-

gated (Shankar, 2019). Furthermore, the Unity Technologies com-

any addressed their issue by updating documentation of the dan-

erous method, as we suggested. After our responsible disclosure

n 2018, several warnings have been included, so developers us-

ng the OpenURL method are now aware of its power and are in-

tructed how to utilize it safely (Unity Technologies, 2019a,b). Later

n 2019, Unity’s security team published a security warning for de-

elopers about the issue we reported (Caldwell, 2019). “However, if

he game developer does not properly sanitize what is passed into

pplication.OpenURL, their player could be at risk. [...] the victim’s

achine will immediately run the application at that link, poten-

ially allowing an attacker to take control of the victim’s system”

 Caldwell, 2019).

We helped detect and prevent vulnerabilities which were dis-

overed and exploited during this research. We released several

nalytical and attacking tools, example exploits, evaluation dataset,

nd vulnerability signatures so that scientific and professional

ommunities ensure secure VR software development. Our work

as impacted practice, and a popular VR application and develop-

ent platform was improved significantly. The broad userbase of

he affected software is presented in Table 11 .

We delivered a concept of novel VR attacks and we further

dentified key requirements for their realization in any VR applica-

ion or platform. Our work also presented an implemented primary

ccount of the first Virtual Reality Worm, Botnet, and Man-in-the-

oom attacks.

. Future work

Our attacks were demonstrated on a single application. Future

ork aims to explore the automation of our approach so that it ex-

ands to other existing and future VR systems. The various analytic

ools and vulnerability signatures we published can be easily uti-

ized by the scientific and professional communities. Future work

ill also focus on both legal and policy implications of our findings

s VR technology gains more momentum.
18 https://bigscreenvr.com/press/ .
19 https://unity3d.com/public-relations .

https://github.com/mvondracek/jQuery-XSS/tree/master/dataset
https://github.com/mvondracek/JsArrayRefDeobfuscator
https://slimit.readthedocs.io/en/latest/
https://github.com/mvondracek/slimit
https://bigscreenvr.com/press/
https://unity3d.com/public-relations

M. Vondráček, I. Baggili, P. Casey et al. Computers & Security 127 (2023) 102923

D

c

i

C

r

W

M

P

a

W

D

A

S

i

t

v

p

p

S

S

f

R

A

A

B
B

B

C

C

C

C

D

D

D

F

F

H

H

H

H

H

H

K

K

L

L

L

L

L

L

L

M

M

M

M

M

M

M

M
O

O

P

P

R

R

eclaration of competing interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Martin Vondráček: Software, Validation, Investigation, Data cu-

ation, Visualization, Conceptualization, Writing – original draft,

riting – review & editing. Ibrahim Baggili: Conceptualization,

ethodology, Resources, Writing – review & editing, Supervision,

roject administration, Funding acquisition. Peter Casey: Conceptu-

lization, Investigation, Writing – review & editing. Mehdi Mekni:

riting – review & editing.

ata availability

Data will be made available on request.

cknowledgements

This material is based upon work supported by the National

cience Foundation under Grant No. 1748950. Any opinions, find-

ngs, and conclusions or recommendations expressed in this ma-

erial are those of the author(s) and do not necessarily reflect the

iews of the National Science Foundation. The work was also sup-

orted by the Brno University of Technology internal project “Ap-

lication of AI methods to cyber security and control systems” FIT-

-20-6293.

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.cose.2022.102923 .

eferences

dams, D., Bah, A., Barwulor, C., Musaby, N., Pitkin, K., Redmiles, E.M., 2018. Ethics

emerging: the story of privacy and security perceptions in virtual reality. In:

Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018). USENIX
Association, Baltimore, MD, pp. 427–442 . https://www.usenix.org/conference/

soups2018/presentation/adams
lsaadi, H.H., Aldwairi, M., Al Taei, M., AlBuainain, M., AlKubaisi, M., 2018. Pene-

tration and security of openssh remote secure shell service on raspberry pi 2.
In: 2018 9th IFIP International Conference on New Technologies, Mobility and

Security (NTMS), pp. 1–5. doi: 10.1109/NTMS.2018.8328710 .

igscreen, Inc., 2018. Press kit. Accessed: 2019-01-14. https://bigscreenvr.com/press/ .
lanchard, C., Burgess, S., Harvill, Y., Lanier, J., Lasko, A., Oberman, M., Teitel, M.,

1990. Reality built for two: A virtual reality tool. SIGGRAPH Comput. Graph. 24
(2), 35-36. doi: 10.1145/91394.91409 .

lanchard, C., Burgess, S., Harvill, Y., Lanier, J., Lasko, A., Oberman, M., Teitel, M.,
1990. Reality built for two: A virtual reality tool. In: Proceedings of the 1990

Symposium on Interactive 3D Graphics. Association for Computing Machinery,

New York, NY, USA, p. 35-36. doi: 10.1145/91385.91409 .
aldwell, B., 2019. How to use URL handlers and OpenURL safely in your

Unity app. Accessed: 2022-08-28. https://blog.unity.com/technology/
how- to- use- url- handlers- and- openurl- safely- in- your- unity- app .

asey, P., Baggili, I., Yarramreddy, A., 2019. Immersive virtual reality attacks and the
human joystick. IEEE Transactions on Dependable and Secure Computing doi: 10.

1109/TDSC.2019.2907942 . 1–1

asey, P., Lindsay-Decusati, R., Baggili, I., Breitinger, F., 2019. Inception: Virtual space
in memory space in real space – memory forensics of immersive virtual reality

with the HTC Vive. Digital Investigation doi: 10.1016/j.diin.2019.04.007 .
ortesi, A., Hils, M., Kriechbaumer, T., contributors, 2010–. mitmproxy: A free and

open source interactive HTTPS proxy. [Version 4.0]. https://mitmproxy.org/ .
anon, L., Ford, A.P., House, T., Jewell, C.P., Keeling, M.J., Roberts, G.O., Ross, J.V.,

Vernon, M.C., 2011. Networks and the epidemiology of infectious disease. Inter-
disciplinary perspectives on infectious diseases 2011 .

e Guzman, J.A., Thilakarathna, K., Seneviratne, A., 2019. Security and privacy ap-

proaches in mixed reality: A literature survey. ACM Comput. Surv. 52 (6).
doi: 10.1145/3359626 .

orai, G., Houshmand, S., Baggili, I., 2018. I know what you did last summer: Your
smart home internet of things and your iphone forensically ratting you out.

In: Proceedings of the 13th International Conference on Availability, Reliability
12
and Security. ACM, New York, NY, USA, pp. 4 9:1–4 9:10. doi: 10.1145/3230833.
3232814 .

acebook Technologies, LLC., 2020. Facebook Horizon - virtual reality
worlds and communities. Accessed: 2021-05-19. https://www.oculus.com/

facebook-horizon/ .
aghani, M.R., Saidi, H., 2009. Social networks’ XSS worms. In: 2009 Interna-

tional Conference on Computational Science and Engineering, Vol. 4. IEEE,
pp. 1137–1141 .

aigh, T., Breitinger, F., Baggili, I., 2019. If i had a million cryptos: Cryptowal-

let application analysis and a trojan proof-of-concept. In: Breitinger, F., Bag-
gili, I. (Eds.), Digital Forensics and Cyber Crime. Springer International Publish-

ing, Cham, pp. 45–65 .
appa, J., Glencross, M., Steed, A., 2019. Cyber security threats and challenges

in collaborative mixed-reality. Frontiers in ICT 6. doi: 10.3389/fict.2019.0 0 0 05 .
https://www.frontiersin.org/article/10.3389/fict.2019.0 0 0 05

eaney, D., 2019. Share of VR headsets on Steam doubled in 2018. Accessed: 2021-

05-19. https://uploadvr.com/vr- steam- grew-2018/ .
eaney, D., 2021. More than 2% of Steam users now have a VR headset. Accessed:

2021-05-19. https://uploadvr.com/steam- vr- users- 2- percent/ .
erzog, P., Barceló, M., 2010. The Open Source Security Testing Methodology Man-

ual. Institute for Security and Open Methodologies (ISECOM). 3.02 edition. On-
line. http://www.isecom.org/mirror/OSSTMM.3.pdf .

eyes, G., 2016. Executing non-alphanumeric javascript without parenthe-

sis. Online. https://portswigger.net/blog/executing- non- alphanumeric- javascript-
without-parenthesis .

ishimoto, A., Winands, M., Müller, M., Saito, J.-T., 2012. Game-tree search using
proof numbers: The first twenty years. ICGA journal 35, 131–156. doi: 10.3233/

ICG- 2012- 35302 .
oetsier, J., 2018. VR needs more social: 77% of virtual reality users want

more social engagement. Accessed: 2021-05-19. https://www.forbes.com/

sites/johnkoetsier/2018/04/30/virtual-reality-77-of-vr-users-want-more-social-
engagement- 67- use- weekly- 28- use- daily/ .

ang, B., 2021. Monthly active VR headsets on Steam pass 2 million mile-
stone. Accessed: 2021-05-19. https://www.roadtovr.com/steam-survey-

vr- monthly- active- user- 2- million- milestone/ .
anier, J., 2017. Dawn of the New Everything: Encounters with Reality and

Virtual Reality. Henry Holt and Company . https://books.google.cz/books?id=

8MCuDgAAQBAJ
arin, M., 2021. Overview of current trends in the field of virtual reality. Common

Information about the Journal A&SE 15 .
ebeck, K., Kohno, T., Roesner, F., 2016. How to safely augment reality: Challenges

and directions. In: Proceedings of the 17th International Workshop on Mo-
bile Computing Systems and Applications. ACM, New York, NY, USA, pp. 45–50.

doi: 10.1145/2873587.2873595 .

ebeck, K., Ruth, K., Kohno, T., Roesner, F., 2017. Securing augmented reality out-
put. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 320–337.

doi: 10.1109/SP.2017.13 .
ing, Z., Li, Z., Chen, C., Luo, J., Yu, W., Fu, X., 2019. I know what you enter on Gear

VR. In: Proceedings of IEEE Conference on Communications and Network Secu-
rity (CNS) . Washington, D.C., USA

ivshits, V.B., Cui, W., 2008. Spectator: Detection and containment of javascript
worms. In: USENIX Annual Technical Conference, pp. 335–348 .

ateas, M., Montfort, N., 2005. A box, darkly: Obfuscation, weird languages, and

code aesthetics. In: Proceedings of the 6th Digital Arts and Culture Conference,
IT University of Copenhagen, pp. 144–153 .

cPherson, R., Jana, S., Shmatikov, V., 2015. No escape from reality: Security and
privacy of augmented reality browsers. In: Proceedings of the 24th International

Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, pp. 743–753 .

ekni, M., 2010. Automated generation of geometrically-precise and semantical-

ly-informed virtual geographic environments populated with spatially-reason-
ing agents. Universal-Publishers .

eucci, M., Muller, A., et al., 2014. OWASP Testing Guide 4.0 - Release. The OWASP
Foundation . Online. https://www.owasp.org/index.php/OWASP _ Testing _ Project

eyer-Lee, G., Shang, J., Wu, J., 2018. Location-leaking through network traffic in
mobile augmented reality applications. In: 2018 IEEE 37th International Per-

formance Computing and Communications Conference (IPCCC), pp. 1–8. doi: 10.

1109/PCCC.2018.8711065 .
erel, T., 2017. The reality of VR/AR growth. Accessed: 2021-10-01. https://

techcrunch.com/2017/01/11/the-reality-of-vrar-growth/ .
icrosoft,. AltspaceVR. Accessed: 2021-05-19. https://altvr.com/ .

ontfort, N., 2008. Obfuscated code. Software Studies: A Lexicon 193–199 .
culus VR, 2015. First Look at the Rift, Shipping Q1 2016. Accessed: 2022-08-13.

https://www.oculus.com/blog/first- look- at- the- rift- shipping- q1- 2016/ .

penJS Foundation, n.d. jQuery API Documentation. Accessed: 2022-03-19. https:
//api.jquery.com/html/ .

alladino, P., 2012. Brainfuck beware: Javascript is after you!Online. http://
patriciopalladino.com/blog/2012/08/09/non- alphanumeric- javascript.html .

aola, S. D., 2015. Advanced JS deobfuscation via AST and partial evalua-
tion (Google Talk wrapup). Online. https://blog.mindedsecurity.com/2015/10/

advanced- js- deobfuscation- via- ast- and.html .

oesner, F., Kohno, T., Molnar, D., 2014. Security and privacy for augmented reality
systems. Commun. ACM 57 (4), 88–96. doi: 10.1145/2580723.2580730 .

okhsaritalemi, S., Sadeghi-Niaraki, A., Choi, S.-M., 2020. A review on mixed reality:
Current trends, challenges and prospects. Applied Sciences 10 (2). doi: 10.3390/

app10020636 . https://www.mdpi.com/2076-3417/10/2/636

https://doi.org/10.1016/j.cose.2022.102923
https://www.usenix.org/conference/soups2018/presentation/adams
https://doi.org/10.1109/NTMS.2018.8328710
https://bigscreenvr.com/press/
https://doi.org/10.1145/91394.91409
https://doi.org/10.1145/91385.91409
https://blog.unity.com/technology/how-to-use-url-handlers-and-openurl-safely-in-your-unity-app
https://doi.org/10.1109/TDSC.2019.2907942
https://doi.org/10.1016/j.diin.2019.04.007
https://mitmproxy.org/
http://refhub.elsevier.com/S0167-4048(22)00315-7/sbref0011
https://doi.org/10.1145/3359626
https://doi.org/10.1145/3230833.3232814
https://www.oculus.com/facebook-horizon/
http://refhub.elsevier.com/S0167-4048(22)00315-7/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00315-7/sbref0016
https://doi.org/10.3389/fict.2019.00005
https://www.frontiersin.org/article/10.3389/fict.2019.00005
https://uploadvr.com/vr-steam-grew-2018/
https://uploadvr.com/steam-vr-users-2-percent/
http://www.isecom.org/mirror/OSSTMM.3.pdf
https://portswigger.net/blog/executing-non-alphanumeric-javascript-without-parenthesis
https://doi.org/10.3233/ICG-2012-35302
https://www.forbes.com/sites/johnkoetsier/2018/04/30/virtual-reality-77-of-vr-users-want-more-social-engagement-67-use-weekly-28-use-daily/
https://www.roadtovr.com/steam-survey-vr-monthly-active-user-2-million-milestone/
https://books.google.cz/books?id=8MCuDgAAQBAJ
http://refhub.elsevier.com/S0167-4048(22)00315-7/sbref0026
https://doi.org/10.1145/2873587.2873595
https://doi.org/10.1109/SP.2017.13
http://refhub.elsevier.com/S0167-4048(22)00315-7/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00315-7/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00315-7/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00315-7/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00315-7/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00315-7/sbref0033
https://www.owasp.org/index.php/OWASP_Testing_Project
https://doi.org/10.1109/PCCC.2018.8711065
https://techcrunch.com/2017/01/11/the-reality-of-vrar-growth/
https://altvr.com/
http://refhub.elsevier.com/S0167-4048(22)00315-7/sbref0038
https://www.oculus.com/blog/first-look-at-the-rift-shipping-q1-2016/
https://api.jquery.com/html/
http://patriciopalladino.com/blog/2012/08/09/non-alphanumeric-javascript.html
https://blog.mindedsecurity.com/2015/10/advanced-js-deobfuscation-via-ast-and.html
https://doi.org/10.1145/2580723.2580730
https://doi.org/10.3390/app10020636
https://www.mdpi.com/2076-3417/10/2/636

M. Vondráček, I. Baggili, P. Casey et al. Computers & Security 127 (2023) 102923

S

S

S

S

S
S

S

v

S

S

U

U

U

V

V

V

V
v

X

Y

Z

Z
ala, N., 2021. Virtual reality, augmented reality, and mixed reality in education: A
brief overview. Current and prospective applications of virtual reality in higher

education 48–73 .
carfone, K., Souppaya, M., Cody, A., Orebaugh, A., 20 08. SP 80 0-115: Technical

Guide to Information Security Testing and Assessment. National Institute of
Standards and Technology.

ecurtiy, W. H., 2006. Cross site scripting worms and viruses, the impending threat
and the best defense.

hankar, D., 2019. The bigscreen beta ”2019 update” is now live!Accessed:

2022-08-13. https://blog.bigscreenvr.com/the-bigscreen-beta-2019-update-is-
now- live- a68ab6ceb506 .

team. Accessed: 2021-10-01. https://store.steampowered.com/ .
teamworks Development, 2021. 2020 year in review - Steam news. Ac-

cessed: 2021-05-19. https://store.steampowered.com/news/group/4145017/view/
2961646623386540826 .

teamworks Development, 2022. 2021 year in review - Steam news. Accessed:

2022-08-08. https://store.steampowered.com/news/group/4145017/view/
3133946090937137590 .

an der Stock, A., Glas, B., Smithline, N., Gigler, T., 2017. OWASP Top 10 –2017. The
OWASP Foundation. Online. https://www.owasp.org/index.php/top10 .

un, F., Xu, L., Su, Z., 2009. Client-side detection of xss worms by monitoring pay-
load propagation. In: European Symposium on Research in Computer Security.

Springer, pp. 539–554 .

utherland, I.E., 1968. A head-mounted three dimensional display. In: Proceedings
of the December 9-11, 1968, Fall Joint Computer Conference, Part I. ACM, New

York, NY, USA, pp. 757–764. doi: 10.1145/1476589.1476686 .
nity Technologies, 2019a. Unity - Scripting API: Application.OpenURL, v2018.3.

Accessed: 2022-08-13. https://docs.unity3d.com/2018.3/Documentation/
ScriptReference/Application.OpenURL.html .

nity Technologies, 2019b. Unity - Scripting API: Application.OpenURL, v2019.1.

Accessed: 2022-08-13. https://docs.unity3d.com/2019.1/Documentation/
ScriptReference/Application.OpenURL.html .

niversity of New Haven, 2019. University of New Haven Researchers Dis-
cover Critical Vulnerabilities in Popular Virtual Reality Application.

Accessed: 2022-03-20. https://www.newhaven.edu/news/releases/2019/
discover- vulnerabilities- virtual- reality- app.php .

ondráček, M., 2019. Security Analysis of Immersive Virtual Reality and Its Implica-

tions. Brno University of Technology, Faculty of Information Technology Master’s
thesis .

ondráček, M., Pluskal, J., Ryšavý, O., 2018. Automation of MitM Attack on Wi-Fi
Networks. In: Matoušek, P., Schmiedecker, M. (Eds.), Digital Forensics and Cyber

Crime. Springer International Publishing, Cham, pp. 207–220 .
ondráček, M., Pluskal, J., Ryšavý, O., 2018. Automated Man-in-the-Middle Attack

Against Wi-Fi Networks. Journal of Digital Forensics, Security and Law 13 (1),

59–80. doi: 10.15394/jdfsl.2018.1495 . https://commons.erau.edu/jdfsl/vol13/iss1/
9

RChat Inc.,. VRChat. Accessed: 2021-05-19. https://hello.vrchat.com/ .
Time Holdings Limited,. vTime - reality reimagined. Accessed: 2021-05-19. https:

//vtime.net/ .
u, W., Zhang, F., Zhu, S., 2010. Toward worm detection in online social networks.

In: Proceedings of the 26th Annual Computer Security Applications Conference.
ACM, pp. 11–20 .

arramreddy, A., Gromkowski, P., Baggili, I., 2018. Forensic analysis of immersive

virtual reality social applications: A primary account. In: 2018 IEEE Security and
Privacy Workshops (SPW). IEEE, pp. 186–196 .

hang, X., Baggili, I., Breitinger, F., 2017. Breaking into the vault: Privacy, secu-
rity and forensic analysis of android vault applications. Computers & Secu-

rity 70, 516–531. doi: 10.1016/j.cose.2017.07.011 . http://www.sciencedirect.com/
science/article/pii/S0167404817301529
13
hang, Y., Liu, H., Kang, S.-C., Al-Hussein, M., 2020. Virtual reality applications for
the built environment: Research trends and opportunities. Automation in Con-

struction 118, 103311 .

Martin Vondráček is a Ph.D. student at the Brno Univer-
sity of Technology (BUT) and a Security Researcher. He re-

ceived Master’s degree and Bachelor’s degree from BUT.
He was a visiting researcher at the University of New

Haven (VR security) and an exchange student at the Uni-

versity of Malta (network security) and at the University
of South Wales (computer forensics). He is dedicated to

research, computer security, forensics, networks, reverse
engineering, and software development.

Ibrahim (Abe) Baggili is a professor of Computer Sci-

ence and Cybersecurity at Louisiana State University with
a joint appointment between the Division of Computer

Science & the Center for Computation and Technology. He

received all the degrees from the Purdue Polytechnic In-
stitute and was a researcher with CERIAS.

Peter Casey received the BS degree from SUNY Geneseo
and the MS degree in computer science at the University

of New Haven. He is a former member of the University
of New Haven’s Cyber Forensics Research and Education

Group (UNHcFREG) and Virtual Reality Security Research
Laboratory.

Mehdi Mekni is an Associate Professor at The University
of New Haven. He received his PhD and Master’s degrees

from Laval University in Quebec City, Quebec, Canada. His
work is focused on computer science, software engineer-

ing, gaming, extended reality.

http://refhub.elsevier.com/S0167-4048(22)00315-7/sbref0045
https://blog.bigscreenvr.com/the-bigscreen-beta-2019-update-is-now-live-a68ab6ceb506
https://store.steampowered.com/
https://store.steampowered.com/news/group/4145017/view/2961646623386540826
https://store.steampowered.com/news/group/4145017/view/3133946090937137590
https://www.owasp.org/index.php/top10
http://refhub.elsevier.com/S0167-4048(22)00315-7/sbref0052
https://doi.org/10.1145/1476589.1476686
https://docs.unity3d.com/2018.3/Documentation/ScriptReference/Application.OpenURL.html
https://docs.unity3d.com/2019.1/Documentation/ScriptReference/Application.OpenURL.html
https://www.newhaven.edu/news/releases/2019/discover-vulnerabilities-virtual-reality-app.php
http://refhub.elsevier.com/S0167-4048(22)00315-7/sbref0057
http://refhub.elsevier.com/S0167-4048(22)00315-7/sbref0058
https://doi.org/10.15394/jdfsl.2018.1495
https://commons.erau.edu/jdfsl/vol13/iss1/9
https://hello.vrchat.com/
https://vtime.net/
http://refhub.elsevier.com/S0167-4048(22)00315-7/sbref0062
http://refhub.elsevier.com/S0167-4048(22)00315-7/sbref0063
https://doi.org/10.1016/j.cose.2017.07.011
http://www.sciencedirect.com/science/article/pii/S0167404817301529
http://refhub.elsevier.com/S0167-4048(22)00315-7/sbref0065

	Rise of the Metaverse’s Immersive Virtual Reality Malware and the Man-in-the-Room Attack & Defenses
	1 Related work
	1.1 Security & privacy in VR
	1.2 Security background
	1.3 Bigscreen application

	2 Man-in-the-room attack & VR worm
	2.1 Concepts definition
	2.2 Formal modeling

	3 Threat/adversary model
	4 Case study - attacking Bigscreen
	4.1 Scenarios
	4.2 Phase I - reconnaissance
	4.3 Phase II - laboratory setup & tool sets
	4.4 Phase III - security analysis
	4.5 Phase IV - exploit development
	4.6 Phase V - tool construction
	4.7 Phase VI - testing
	4.8 Major findings
	4.9 Mitigations & suggestions

	5 Improving the state-of-the-art of VR vulnerability detection & prevention
	5.1 CodeQL signature for unity openURL vulnerability
	5.2 Unity OpenURL exploit demo
	5.3 Dataset of unsafe jQuery method calls
	5.4 jQuery XSS static analyzer
	5.5 JavaScript array ref deobfuscator
	5.6 SlimIt library fork

	6 Discussion & conclusion
	7 Future work
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgements
	Supplementary material
	References

