
Control Flow Analysis for Bottom-up Portable
Models Creation

Petr Bardonek
Brno University of Technology

Brno, Czech Republic
ibardonek@fit.vut.cz

Marcela Zachariášová
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Abstract—Portable Test and Stimulus Standard (PSS) is a
game-changing standard in the field of simulation-based veri-
fication. This paper focuses on creating a top-level PSS model
of the Design Under Verification (DUV) using PSS models of
its components (submodels). This is one of the most challenging
problems the PSS is currently facing, and it is called vertical
reuse of portable models. The hardest part is to create proper
constraints for the interconnection of submodels to represent
behaviour intended to be verified. This paper aims to evaluate
a hypothesis that with the analysis of the control flow inside
the DUV, it is possible to significantly simplify the reusability of
PSS models in the vertical direction. The control flow analysis
can provide valuable information for creating constraints, as the
control signals influence the behaviour of the DUV the most. As
the DUV, the execution stage subsystem of the PULP platform
processor was selected, which is an open-source representative
of the RISC-V processor subsystem. Firstly, PSS models for all
components inside this subsystem have been created. Then, the
control signals of all these components were traced, and a map of
dependencies from the subsystem point of view was assembled.
Afterwards, the analysis was used to create constraints for the
component-level PSS models while interconnecting them into the
top-level PSS model.

Index Terms—PSS, portable stimuli, portable models,
simulation-based verification

I. INTRODUCTION

The PSS [1] standard strives to simplify the definition of
verification intent for stimuli generation. It aims to enhance
readability, reduce redundancy, and promote portability among
various platforms and design levels. Though advantageous,
PSS is still new and faces challenges such as learning a new
approach, immature tools, and achieving portability.

The primary goal of this work is to help verification engi-
neers create portable models (PMs) and their transformations
to different reuse scenarios. The main target is vertical reuse,
which would allow the reuse of component-level PMs when
building system-level PMs. The design selected for the exper-
iments is the RISC-V processor from the PULP project [2],
as it contains enough hierarchical layers for vertical reuse.
PM for one of its components was manually implemented in
the previous work, followed by theoretical ideas on how the
control flow analysis can help in constraints definition at the
subsystem level [3].

In the current paper, the progress in experimental work and
the new findings are presented. Theoretical ideas from the
previous paper were implemented. As a result, it is possible to

practically demonstrate vertical reuse while showing how the
control flow analysis actually helps in this process. The main
objectives of this paper are:

• manual implementation of PMs for all identified compo-
nents in the execution stage (EX-stage) of the RISC-V
processor pipeline,

• control flow analysis of the EX-stage components,
• interconnection of PMs using the control flow analysis,
• creation of a PM for the whole EX-stage subsystem.
The paper consists of five sections. Section II briefly de-

scribes PSS and principles of PMs creation. It also explains
the reuse options with a focus on vertical reuse and outlines
the related work connected to vertical reuse. Section III
shows a complete control flow analysis for all the EX-stage
components of the RISC-V processor. Section IV outlines
the implementation of their PMs, while also presenting the
creation of the PM for the whole EX-stage subsystem using
the control flow analysis. Section V concludes the paper and
discusses the generalisation of the presented approach and
options for future work.

II. PORTABLE MODELS AND REUSE

The verification intent is described as a set of rules forming
a PM representing a set of scenarios for the DUV that will be
checked. Nowadays, the definition of these rules is a manual
job done by verification engineers, and it should be in confor-
mance with PSS. The PSS compliant tools can visualise PM in
the form of a graph to ease the debugging process. Moreover,
tools automatically enumerate the minimum number of runs
to cover the whole verification state space defined by PM.

The main abstraction mechanism in PSS is called action,
representing a unit of behaviour. Depending on its purpose
in the PM, it can use the DUV and verification environment
functions via exec block construct or combine other actions
to create more complex behaviours.

The PSS provides various methods to limit the PM and
reduce the size of its state space. Design specifications impose
resource constraints that set practical limits on the PM, such as
limiting the number of channels, states, and data flow items.
Another type is control restrictions determined by coverage
and constraints. The PSS tool automatically identifies the
minimum set of runs required to cover the state space defined
by the PM and its constraints.



As for portability, it is possible to categorise PSS applica-
tions according to what type of reuse is most central to the
application. In [4], three reuse options were identified:

• Platform - reuse on different platforms (FPGA, emulator,
UVM/SystemVerilog verification environment).

• Vertical - hierarchical reuse from a block- to subsystem-
or to system-level verification

• Horizontal - reuse in derivatives of the same design or in
designs with significant similarities.

From the related work connected to vertical reuse, it is
clear that it is essential to involve some up-front planning.
Otherwise, reuse can backfire and require more work without
providing proportionate benefits [4]. In [5], it is stated that
while moving from block to subsystem or system-level, several
details may differ in the environment, such as memory ad-
dresses, device IDs, different constraints on certain operations,
and sharing of resources. Paper [6] describes a complete cycle
of interconnect bus verification - from IP to SoC-level, using
PSS. One PM was reused on all levels, but exec blocks had to
be rewritten to reflect specific requirements on every level.

III. CONTROL FLOW ANALYSIS

The control signals drive the behaviour of the DUV, and
when connecting components to a bigger system, they play a
crucial role. The hypothesis is that the same applies to portable
models, so the idea is to connect PMs for components to a
bigger PM using the control flow analysis of these signals.
How does this analysis work? The standard means of logical
simulators (Fig. 1) allow to track assignments into every
control input throughout the component hierarchy to see which
signals influence the behaviour.

Fig. 1. Tracking signal drivers in an RTL simulator.

This analysis provides insight into how components influ-
ence each other, helping to form constraints for their PMs
interconnection. Additionally, the control flow analysis will
give information about smaller parts of the EX-stage, how
they fit into the control flow, and influence its behaviour. The
analysis itself is composed of:

• Isolation of control signals - an assumption is that the
control connections and also restrictions between com-
ponents are usually based on control signals.

• Analysis of control signals drivers - tracking assignments
throughout the design, mapping the control flow which
influences component’s behaviour.

In the following sections, the control flow analysis of
components inside the EX-stage is provided:
• MULT (Multiplication unit) - a computational unit for

multiplication operations.
• FPU (Floating Point Unit) - a computational unit for

operations with floating-point numbers.
• APU dispatcher (Auxiliary Processing Unit) - a control

unit that is capable of offloading operations to the shared
units and, at the same time, handling access contentions,
checking data hazards, and write-back contentions with
private execution units.

• ALU (Arithmetic Logic Unit) - a computational unit for
arithmetic and bit-wise operations. Optionally, it can in-
clude division operations. For the purposes of this research,
the division is included.

Please refer to Fig. 2 to better understand interconnections
while reading the following sections. The main goal is to
show the control flow analysis of the RTL code first and then
describe how this analysis can be used for verification purposes
and how it helps build the subsystem PM.

A. FPU Control Flow Analysis

• control inputs: in valid i, out ready i, flush i, rst ni
• control outputs: in ready o, out valid o, busy o
Based on the analysis, the flush i is constant-driven to zero,

meaning FPU never interrupts its computation, throwing away
the values. The out ready i is constant-driven to one, implying
the FPU’s environment is always ready to receive a result.
The in valid i determines the validity of inputs, and if it is
set along with the in ready o, signalling that FPU is ready,
the unit will start the computation. It is worth mentioning that
apu master req o from APU drives in valid i.

B. MULT and ALU Control Flow Analysis

• control inputs: rst n, enable i, ex ready i
• control outputs: ready o
These components are the same from the control flow point

of view. Therefore, a joint analysis is provided.
Based on the analysis, the enable i is driven directly from

the Decoder (ID-stage) of the processor. The ex ready i de-
termines that the component’s environment is ready to process
the result. The interesting thing about this signal is that part
of its control flow includes the component itself, driven by the
ex ready o logic. This logic comprises control signals from
all over the subsystem, including the component’s ready o.

C. APU Dispatcher Control Flow Analysis

• control inputs: apu master gnt i, apu master valid i,
enable i, apu lat i, rst ni

• control outputs: apu multicycle o, apu singlecycle o,
active o, stall o, read dep o, write dep o, perf type o,
perf cont o, apu master req o, apu master ready o

Decoder (ID-stage) sets the enable i, one of the signals for
request sending to the shared units, and the requests’ latency
on apu lat i. APU sends requests via apu master req o.



Fig. 2. The subsystem control flow analysis.

apu master gnt i informs that the requested component is
granted. It is constant-driven to one. The apu master valid i
confirms the validity of results from the granted component. It
is controlled directly by the FPU’s out valid o control signal.

D. EX-stage Subsystem Control Flow Analysis

The reset inputs within the EX-stage are globally driven.
Through control flow analysis, five smaller components were
identified that influence the subsystem’s behaviour.

The analysis starts with two bigger combinatorial logics
resulting in ex ready o and ex valid o signals. The former
signals the subsystem’s environment that it is prepared to
receive new data, while the latter complements it by indicating
the completion of processing.

To set ex ready o, all components in the subsystem have
to be ready. It is worth mentioning that the APU and FPU
combine their signals to report the readiness of the FPU.
Another condition is an absence of stall, which APU can
issue through stall o, based on the received requests. The
logic forming ex ready o also includes LSU (Load Store Unit)
signals from outside. It informs that EX and WB stages are
ready for new data. The last condition is no contention for
storing FPU’s result caused by different operation latencies.

Similarly to ex ready o, ex valid o requires ALU and
MULT to be ready. Additionally, one of these conditions must
occur: FPU result is valid, MULT or ALU is enabled, access
to control status register or load from memory is issued. The
signal conditions the data storage into the EX/WB register.

The last part consists of two multiplexers, one for the LSU
write port and the second one for the ALU write port. The first
one uses the values saved in the EX/WB register to determine
if it writes two-cycle operations of FPU or loads data from the
memory to the register file. The second one is used to write the
results of the components to the register file and forward them
to the ID-stage to use them for the subsequent computation.

IV. PORTABLE MODELS

Once the analysis is complete, everything is ready to pro-
ceed with the verification process. This section outlines the
PMs manually implemented for the EX-stage subsystem and
its components. Firstly, PMs for the components were imple-
mented as outlined in Sections IV-A and IV-B. Subsequently,
Section IV-C demonstrates how is the information from the
control flow analysis used to develop a subsystem-level PM.
To enhance comprehension, this paper utilises graphical repre-
sentations of the PMs. Moreover, all source codes of the PMs
and DUV (to provide insight into DUV complexity) will be
available on the authors’ page [7] along with the analysis of
all control signals of the EX-stage (only important ones are
presented in the paper).

A. FPU, MULT and ALU Portable Model

From the PSS modelling point of view, most of the compu-
tational units follow the same pattern: one operation working
with a required number of operands. Based on this fact, it is
possible to generalise the description of PMs for FPU, MULT,
and ALU components, creating a single base model that can
be constrained and extended as needed. PM can be divided
into three parts, an external verification IP (VIP), representing
the input environment of DUV, a model of the verification
intent, and an internal VIP, which takes the outputs of DUV.

The main focus is on the verification intent, as it defines
a set of scenarios to explore during the verification of the
DUV. The proposed general approach to its modelling is to
divide it into smaller submodels, which can then be used to
compose a model for more complex scenarios. In the case
of FPU, MULT, and ALU components, two submodels were
defined based on the specification: one for reset, second for
computational operations (Fig. 3).

The operation submodel consists of three actions: wait rdy,
operation, and wait done. Both wait actions are used for
stimuli transmission control. The first waits for a component



Fig. 3. A component-level model.

to be ready for a new operation. The latter is used to pair
stimuli with their results. The operation action generates
stimuli considering the defined coverage and constraints. The
submodel for reset randomises the number of repeats for
random stimuli generation with an active reset.

B. APU Dispatcher Portable Model

Compared to other components, the APU Dispatcher is used
for control. The PM for it is divided into reset, basic, latency,
and hazard submodels.

The basic submodel (Fig. 4) is for verification of APU
behaviour without any hazards or contentions. The submodel
is composed of seven actions, which cover the whole APU
processing of the request. The submodel starts by requesting
an operation with the op request action. For verification
purposes, the unit for the requested operation is granted with a
randomly generated delay with the grant delay action. During
the delay, random values are sent with the rand vals action,
with the only constraint being that the unit is not granted.
After the delay, the unit is granted with the grant unit action.

The grant of the unit is followed by a random delay gen-
erated with the valid delay action to simulate the processing
time of the requested operation. The valid signal for result
values is then sent with the valid vals action. Similarly to
the previous case, random values are sent with the rand vals
action during the delay, with the only constraint now being
not to send the valid signal.

Fig. 4. Basic submodel for APU.

The latency submodel (Fig. 5) is intended for the verifi-
cation of access contentions. The submodel consists of four
actions. The first action, grant vals, sends a request for an
operation while also granting a unit for its execution. The
request is followed by a random delay generated by the

valid delay action. The delay is within the range of the
processing time of the possible operations. Random values are
sent with the rand vals action during the delay. The action has
constraints that prevent the unit from being granted and from
validating results with valid signal. The last action, valid vals,
sets the valid signal for the results of the processing unit. It
also sets the grant signal, potentially starting another operation
without delay. Access contentions are invoked by granting the
unit by the grant vals and valid vals actions, while only the
latter validates the results.

Fig. 5. Latency submodel for APU.

The hazard submodel (Fig. 6) is intended for verifica-
tion of data hazards. It contains two actions, send vals, and
send hazard vals. Both actions request an operation and grant
the unit for its execution without delay.

For achieving the occurrence of data hazards, several con-
straints are defined. The send vals action has the latency of
an operation set to a value greater than one to enable the
formation of data hazards within the send hazard vals action.
The other important constraints are on the registers being used.
A new operation must use the same register as its preceding
operation (the registers of operands for the read operation, the
register for a result for the write operation).

Fig. 6. Hazard submodel for APU.

C. EX-stage Subsystem Portable Model

The goal was to reuse the existing PMs as building blocks
to create the PM of the subsystem. Moreover, some intercon-
nection logic outside of the components had to be considered,
which was identified by the control flow analysis (registers,
multiplexers, control combinatorial logic).

When looking at the subsystem, it has a different outside
environment than its components, meaning it has a different
external VIP. The first step for vertical reuse was connecting
the verification intent of PMs to the new external VIP through
constraints based on the control flow analysis.

The next step was the definition of the verification intent.
The specification guided its structure. For example, only one
operation can be issued at a time, which resulted in a direct
reuse of intents from the component-level PMs. FPU and APU
models were merged for reuse convenience as they depend



on each other from the functional perspective (Fig. 2). The
wait actions were moved from individual PMs’ intents to the
subsystem PM along with the submodel for the reset (Fig. 7).
Moreover, the constraints of wait actions had to be modified as
waiting depends on signals from all over the subsystem now.

Additionally to subsystem PM for reuse of computational
units verification, two separate subsystem PMs were created
based on the APU scenarios for verification of data hazards
and access contentions.

To conclude, three subsystem PMs were created with sig-
nificant reuse, one for verification of computational units
(Fig. 7) and the other for data hazards and access contentions
verification based on the APU scenarios.

Fig. 7. The EX-stage’s verification intent.

Alongside with the above-mentioned summary, the follow-
ing three examples demonstrate how the control flow analysis
can be used for constraint setup in the subsystem-level model.

Example 1:
• Control flow analysis output: signals ex ready o and

ex valid o are combined to get the result of the current
operation and commence processing of new input data for
the next one. Both signals need information from every
component in the EX-stage, as well as input signals from
external sources, for example, LSU (Fig. 8).

Fig. 8. Control flow analysis of ex ready o and ex valid o signals.

• Update of PM constraints: constraints for setup of op-
erations and wait for results must be updated to reuse
PMs of all components. First, the action operation inside
the verification intent of the included block-level model
(Fig. 3) must now include constraints for lsu ready ex i,
wb ready i and branch in ex i signals to start the com-
putation and get the result for single-cycle operations.
These signals are direct inputs to the ex ready o from the
outside environment of the EX-stage. Secondly, the action
wait done (Fig. 7) must include these constraints to get
multi-cycle operations results. The updated constraint for
signals on the EX-stage interface can be seen in Fig. 9.

Fig. 9. Signals on the EX stage interface to set the ex ready o signal.

Example 2:
• Control flow analysis output: APU and FPU are tightly

connected. All inputs and outputs of the FPU are processed
by the APU. The latency of the FPU operation is set on
the input signal apu lat i. This input is part of the logic in
APU for the correct handling of access contentions, check-
ing data hazards, and write-back contentions. The APU
uses stall o, apu multicycle o and apu singlecycle o sig-
nals for the control. For verification of the FPU operations
without hazards, the latency on the APU input interface
has to be set based on the generated operation (Fig. 10).

Fig. 10. Control flow analysis of FPU latency.

• Update of PM constraints: constraints for FPU operations
setup must include latency constraints for the reuse of FPU
and APU PMs (Fig. 11). In particular, latency for division
and square root operations has to be set to three clock
cycles and for the other operations to one.

Fig. 11. FPU operation setup on the subsystem level.



Example 3:
• Control flow analysis output: the EX-stage can execute

operations and also access the memory. These operations
require the setting of their own enable signal to start, and
based on the specification, only one operation can be issued
at a time. Therefore, only one sub-block should be enabled
by its enable i signal (Fig. 12).

Fig. 12. Control flow analysis of operation execution.

• Update of PM constraints: constraints for the operation
setup and waiting for the result must be updated to reuse
PMs of all components. First, the action operation must
be extended to include all enable signals. An example
for the ALU can be seen in Fig. 13. Additionally, the
action wait done must disable all enable signals to not
start another computation while waiting for multi-cycle
operations to finish.

Fig. 13. Example of a signal setup to enable only one operation.

V. CONCLUSION AND FUTURE WORK

This paper presented an experimental work with the PSS
application on vertical reuse utilising the control flow analysis.

The starting point was a control flow analysis of the
EX-stage subsystem of the RISC-V processor, executed by
tracking assignments throughout the design. The objective was
to identify control signals and their potential influence on the
behaviour of the whole subsystem.

The next step was the manual creation of PMs for all
the components within the subsystem. These PMs were then
utilised as building blocks for creating the PM for the whole
subsystem. Information obtained from the control flow analy-
sis was used to determine PMs interconnection and verification
scenarios constraints, effectively constructing the subsystem
PM. This is the primary outcome of the paper. Without the
analysis, much more time would have been spent troubleshoot-
ing errors in the subsystem model, such as omitting specific
signal settings or being trapped in an infinite loop.

This paper outlines an important step towards automation
planned for the future. Specifically, the objective is to replace
manual control flow analysis with an automated process, util-
ising a customised version of the open-source logical analyser
Pyverilog [8]. The system/subsystem-level PM may be pre-
generated, while actions can be automatically extracted from
the block-level PMs. The most critical component, constraints,
will be added based on pattern recognition from the control
flow analysis output. These patterns will be defined in a
dedicated library. Once this is achieved, conducting more
practical experiments with diverse and complex DUVs and
producing quantifiable outcomes will become more feasible.

Regarding the generalisation of this method, it should scale
fairly to more complex systems. Discussions may arise about
handling interfaces involving more control signals or standard
bus protocols. The extent of control flow analysis is essentially
limited by the capabilities of the RTL simulators, which deter-
mine the level of the DUV complexity that can be managed.
The analysis can delve deeply, involving numerous signals in
a chain, presenting too many details. A potential solution is to
experiment with a restricted depth of the analysis, for instance,
by stopping at the closest neighbour component within the
subsystem and checking if the analysis still yields sufficient
information for defining the subsystem PM constraints. Bus
protocols are often handled by separate portable models, which
can be excluded from the control flow analysis once identified,
linking their PM to the subsystem PM instead.

To conclude, the experiments presented in this paper were
time-consuming to do manually. Therefore, any automation
achieved in this process would be valuable for all the verifi-
cation engineers using PSS.
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