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ABSTRACT

Large-scale pre-trained self-supervised learning (SSL) models have
shown remarkable advancements in speech-related tasks. However,
the utilization of these models in complex multi-talker scenarios,
such as extracting a target speaker in a mixture, is yet to be fully
evaluated. In this paper, we introduce target speech extraction (TSE)
as a novel downstream task to evaluate the feature extraction ca-
pabilities of pre-trained SSL models. TSE uniquely requires both
speaker identification and speech separation, distinguishing it from
other tasks in the Speech processing Universal PERformance Bench-
mark (SUPERB) evaluation. Specifically, we propose a TSE down-
stream model composed of two lightweight task-oriented modules
based on the same frozen SSL model. One module functions as a
speaker encoder to obtain target speaker information from an en-
rollment speech, while the other estimates the target speaker’s mask
to extract its speech from the mixture. Experimental results on the
Libri2mix datasets reveal the relevance of the TSE downstream task
to probe SSL models, as its performance cannot be simply deduced
from other related tasks such as speaker verification and separation.

Index Terms— Target speech extraction, self-supervised learn-
ing, SUPERB

1. INTRODUCTION

Transformer models, empowered by self-supervised learning (SSL)
[1, 2,3, 4], have recently marked significant achievements in the field
of speech processing, including automatic speech recognition (ASR)
[5], speaker verification (SV) [6, 7, 8], and speech enhancement (SE)
[9, 10]. The robustness and generalization abilities of these models
are attributed to their capacity to extract general-purpose features
through the SSL paradigm on large-scale datasets [11].

To quantitatively evaluate the SSL models for various speech
tasks, benchmarks such as the Speech processing Universal PERfor-
mance Benchmark (SUPERB) and its multilingual variant have been
proposed [12, 13, 14]. In these benchmarks, SSL models are eval-
uated on several downstream tasks using lightweight task-specific
models that rely on input features derived from the layer-wise out-
puts of the frozen pre-trained SSL models. SUPERB covers diverse
downstream tasks, including ASR, SV, SE, speech separation, etc.

Recently, the problem of Target Speech Extraction (TSE), de-
fined as the process of isolating the speech signal of a target speaker
from a multi-talker mixture using auxiliary cues [15], has attracted
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significant interest [16, 17]. This task not only requires speech sep-
aration but also the precise identification of the target speaker. Such
a dual requirement makes TSE a valuable candidate for evaluating
the capabilities of SSL models in extracting fine-grained (acoustic)
features and understanding speaker-specific context. However, SU-
PERB does not include a TSE downstream task.

In this paper, we introduce a novel TSE downstream task, fol-
lowing SUPERB principles. Specifically, we build an SSL-based ex-
tractor model that processes a speech mixture to estimate the target
speech. This process is conditioned on a target speaker embedding
obtained by a speaker encoder using the enrollment speech of the
target speaker. Both the extractor and speaker encoder are derived
from the same pre-trained SSL model. With this new downstream
task, we aim to evaluate pre-trained SSL models from a new per-
spective and answer the following research question: Is TSE perfor-
mance governed by the performance of SSL models on the related
SV and separation tasks?

There are a few works that use pre-trained SSL models for TSE
[18, 19]. In [18], a pre-trained SSL model was explored to extract
target speaker embeddings from enrollment speech for TSE, but not
for the extraction module. It yielded a marginal improvement over
FBANK features. In [19], an SSL model was employed for encoding
both mixtures and speaker enrollment. While it briefly introduced a
SUPERB-style downstream model, it predominantly focused on the
integration of SSL representations into existing TSE systems (i.e.,
TD-SpeakerBeam [20]). Compared to that work, this paper makes
the following key contributions:

¢ SUPERB-TSE System: We introduce a novel TSE task for
evaluating pre-trained SSL models following principles from
SUPERB. With this new task, we investigate various imple-
mentation choices for the downstream model, highlighting
SSL’s potential in extracting the target speaker’s speech from
mixtures.

* Comparative Analysis: We benchmark nine well-known
large-scale SSL speech models and three Whisper models
[21] with our proposed TSE downstream task.

* Performance Correlation: Our observations reveal that the
performance of TSE tasks cannot be simply inferred from the
performance on the isolated SV and Separation downstream
tasks, suggesting a more intricate relationship between these
tasks.

* Comparison with TD-SpeakerBeam: We compare the per-
formance of the SUPERB-TSE model with a strong TSE sys-
tem (TD-SpeakerBeam), in terms of training time and perfor-
mance. It shows that while the SSL-based system enables fast
training, there is significant room for further improvement.
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Fig. 1: Architecture of proposed SSL-based TSE system.

2. SUPERB-STYLE TARGET SPEECH EXTRACTION

In this section, we introduce the downstream TSE model used to
probe SSL models. Figure 1 shows the architecture of the TSE
model, emphasizing the pre-trained SSL models. The TSE problem
consists of extracting the speech of a target speaker, x, in a mixture,
y = x + i, where i consists of interference speakers and noise. We
rely on an enrollment utterance, c, to identify the target speaker.

The proposed SSL-based TSE system consists of four main
blocks: the encoder, decoder, speaker encoder (SpkEnc), and
extractor, as a typical TSE system [15]. The encoder trans-
forms the input speech mixture y into a sequence of features Z,
by Z, Encoder(y). SpkEnc is responsible for computing a
speaker embedding vector, e, from the enrollment speech, c, as
e = SpkEnc(c). Subsequently, the extractor computes the target
speech mask M within the feature domain Z, from SSL features
h and the target speaker embedding e, as M = Extractor(h, e).
Here, following the standard SUPERB approach, the SSL features
consist of a weighted sum of the outputs of the Transformer blocks.
We then obtain a feature representation of the target speech, Zs, by
applying the mask on the features of the mixture, as Z; = M © Z,,
where ® denotes Hadamard multiplication operation. Finally, the
decoder converts Z back to the time domain, to obtain the target
speech signal as, x = Decoder(Z;).

2.1. Encoder/Decoder

The Encoder module operates on the raw waveform by utilizing a
set of time-domain finite impulse response filters. We explore two
options for the encoder and decoder.

First, we can use Short Time Fourier Transform (STFT) and in-
verse STFT (iSTFT) for the encoder and decoder, respectively. Al-
ternatively, the filter bank can also be randomly initialized and then
jointly optimized with the entire TSE system, allowing the filters
to focus on task-related frequency bands [22]. Accordingly, the De-
coder is implemented by using a deconvolution layer that up-samples
the target speaker features Z back into the time-domain waveform.
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Table 1: Different fusion methods in TSE. FiLM: Feature-wise lin-
ear modulation, which uses two vectors e; and ez obtained by pro-
jecting the embedding vector, e, with two learnable linear layers.

Fusion Method  Implementation SI-SDRit
Addition Zi =Zniz+e 9.13
Multiplication Zi="Zniz Oe 9.96
Concatenation  Zj; = concat(Zmiz,€) 8.88
FiLM Zf=Zmiz O €1 + e 8.16

2.2. SSL-based Speaker Encoder

In SUPERB-style SV downstream tasks, speaker representation is
obtained using a time-delay neural network (TDNN)-based speaker
extractor (i.e. X-vector [23]) from the weighted sum of layer-wise
SSL features. To construct a more lightweight module, we proposed
an attentive pooling called multi-head factorized attentive pooling
(MHFA) to extract speaker information [8], as shown in Figure 1.
The SSL-MHFA utilizes two sets of normalized layer-wise weights
to generate attention maps and compressed features, respectively.
These are designed to encode speaker-discriminative information
and phonetic information, respectively. We obtain the speaker em-
bedding vector by aggregating the compressed features over frames
and then project the resulting vector to a lower-dimensional space
using a linear layer. This method allows each attention head to focus
on specific phonetic units, resulting in a speaker embedding that is
robust to phonetic variability.

In the proposed downstream TSE model, we use the SSL-MHFA
module to compute the target speaker embedding vector, e. Note that
this module is trained jointly with the other components of the TSE
model without any speaker identification loss.

2.3. SSL-based Extractor

The extractor is composed of three sub-modules: a mixture encoder
(MixNet), a fusion layer, and a target mask generator (MaskNet),
as illustrated in Figure 1. It accepts the SSL features, h, as input.
The processing is conditioned on the target speaker through a fusion
layer that combines the speaker embedding e and the output of the
MixNet, Zmiz, as Zy = Fusion(Zmiz, e). Finally, MaskNet com-
putes the mask, M from Zy.

In this study, MixNet is implemented by a single BLSTM layer,
while Masknet employs two BLSTM layers. We explore various
options for the fusion layer [24], summarized in Table 1.

3. EXPERIMENTS

We perform three sets of experiments. First, we investigate the con-
figuration for the TSE downstream model. We then probe various
pre-trained SSL models on the proposed TSE downstream task. Fi-
nally, we compare the performance with a powerful TSE system.

3.1. Experiment Setup

Datasets: In this work, we conduct comparative experiments across
three downstream tasks: TSE, SV, and Separation. For TSE, we use
Libri2Mix [25], consisting of simulated mixtures of two speakers.
Following the enrollment speech preparation in TD-SpeakerBeam'
with 16kHz sampling rate, the dataset is partitioned into three sub-
sets: train-100, valid, and test. Our proposed TSE downstream task
relies on Libri2mix with train-100 for faster experimental turnover.

Ihttps://github.com/BUTSpeechFIT/speakerbeam
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Table 2: Evaluating different TSE model configurations in Libri2mix (16kHz-min). For a fair comparison, we use the layer-wise outputs of

the pre-trained WavLLM Base Plus model as SSL features.

System  Encoder/Decoder Extractor SpkEnc  Mask Type Objective  SI-SDRiT STOIL(%)T PESQft
1 STFT/ASTFT STFT STFT Magnitude Mask MSE 5.96 79.55 1.42
2 STFTASTFT STFT SSL Magnitude Mask MSE 7.42 81.75 1.51
3 STFTASTFT SSL STFT Magnitude Mask MSE 8.70 85.03 1.83
4 STFT/ASTFT SSL SSL Magnitude Mask MSE 9.96 87.79 1.97
5 STFT/ASTFT SSL SSL Magnitude Mask SI-SDR 10.66 88.74 1.91
6 STFTASTFT SSL SSL Complex Mask SI-SDR 10.61 88.84 1.91
7 Conv1D/DeConvliD  SSL SSL Encoder-domain Mask ~ SI-SDR 11.04 89.47 1.93

Table 3: Comparison of different general-purpose speech models for TSE, SV, and separation downstream tasks. For Whisper models, we
only use the audio encoder. In the fine-tuning case, initializing from a converged model with a frozen SSL (e.g. WavLM Base Plus), we

unfreeze the SSL and further train the entire system for 20 epochs.

TSE SV (MHFA) SV (Xvector) Separation

Upstream #Params

SI-SDRif STOI (%) PESQt FR(%)] EER(%)/| EER(%) | SI-SDRit
Whisper-Base 20.59M 9.25 86.13 1.71 6.11 3.39 9.55 9.76
Whisper-Small 88.15M 10.28 88.79 1.82 4.45 2.55 9.19 11.06
Whisper-Medium 307.22M 9.94 87.26 1.85 6.50 4.22 8.66 10.94
Data2vec Base 93.84M 9.43 86.21 1.72 5.45 3.51 6.79 9.95
Data2vec Large 314.30M 9.55 86.11 1.77 7.46 2.59 7.61 10.81
wav2vec 2.0 Base  95.00M 9.52 86.34 1.72 5.23 3.53 6.10 10.01
wav2vec 2.0 Large  317.38M 8.40 84.24 1.74 9.31 3.04 6.38 10.31
Hubert Base 94.68M 9.62 86.69 1.74 4.56 3.06 5.30 10.01
Hubert Large 316.61M 9.03 85.41 1.88 8.73 2.94 5.82 10.95
WavLM Base 94.70M 10.03 87.99 1.84 3.71 2.71 5.36 10.80
WavLM Base Plus  94.70M 11.04 89.47 1.93 345 2.03 4.39 11.41
WavLM Large 316.62M 9.73 86.53 2.04 7.96 2.30 4.87 11.87
WavLM Base Plus [Fine-tuning] 11.51 90.08 2.01 3.23 - - -
TD-SpeakerBeam 13.03 90.63 221 4.85 - - -

Consequently, all experiments in the paper rely on this configuration,
except when specifically specified in the exploration experiments in
Section 3.4. Regarding SV, all models are trained using the Vox-
Celebl dataset and evaluated on VoxCeleb1-O [26]. The speakers
in the training and evaluation sets are different. For Separation, we
evaluate the performance of SSL models on Libri2mix.

Implementation details: In the system using STFT/iSTFT for En-
coder/Decoder, the window size and the number of FFT points are
set to 1024 with a stride of 320. This stride aligns with the downsam-
pling rate in the SSL model. Additionally, the dimension of BLSTM
is 512. It is noted that this configuration is coherent with the SU-
PERB’s Separation downstream task hyper-parameters [13]. For the
systems with learnable kernels, using ConvlD and DeConv1D, the
kernel size is set to 1024 with a stride of 320, and the number of
filters is 512.

For the speaker encoder, when the input consists of STFT, we
process the magnitude of the STFT coefficients with a three-layer
BLSTM followed by average pooling to derive the speaker embed-
ding vectors. Conversely, for SSL features, we employ MHFA for
speaker embedding extraction. The MHFA is configured with four
heads and a compression layer with a dimension of 128.

We trained all modules of the TSE model jointly using the Mean
Squared Error (MSE) or scale-invariant signal-to-distortion ratio (SI-
SDR) loss between the reference and estimated target speech [27].
Note that the MSE is computed in the spectral domain, while SI-
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SDR is computed in the time domain. We used the Adam optimizer
and trained the model for 200 epochs.

For the SV task, we use AM-softmax loss with a scale of 30 and
a margin of 0.4 as the objective function. We set the number of heads
to 32 for MHFA, resulting in a model size of 2.23M parameters com-
pared to the 5.71M parameters of Xvector.

For the separation experiments, we simply employ the default
configuration in SUPERB, which consists of a three-layer BLSTM.
Performance Metrics: For TSE, we measure performance in terms
of scale-invariant signal-to-distortion ratio (SI-SDR) improvement
(SI-SDRi), perceptual evaluation of speech quality (PESQ), short-
time objective intelligibility (STOI), and Failure rate (FR) [28]. FR
measures the proportion of test samples with an SI-SDRi below 1
dB. Failures typically occur when the TSE system extracts the incor-
rect speaker or outputs the mixture. For SV, we calculate the Equal
Error Rate (EER).

3.2. Analysis of downstream model configuration

We first perform several experiments to find an effective configu-
ration for the TSE downstream model. Here, we use WavLM Base
Plus as the upstream model and STFT/iSTFT as the encoder/decoder
unless specified.

In Table 1, we evaluate the effectiveness of various fusion strate-
gies employed in TSE. We observe that the multiplication strategy
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outperforms other approaches. Consequently, we use it in all subse-
quent experiments.

In Table 2, we present an extensive evaluation of different TSE
model configurations on the Libri2mix dataset. First, we compare
using SSL features with STFT coefficients for the extractor and Sp-
kEnc (systems 1 to 4). We observe that using SSL features for both
the extractor and SpkEnc (system 4) results in significantly higher
extraction performance. Next, we explore the use of the time domain
SI-SDR loss and using magnitude or complex masks (systems 5 and
6). We found that using SI-SDR loss significantly improves SI-SDRi
and STOI scores. However, using complex masks (system 6) had lit-
tle impact on the results. Finally, we replaced the STFT/iSTFT en-
coder/decoder modules with learnable ones (system 7). This again
improved SI-SDR and STOI scores. We use that configuration in
subsequent experiments.

3.3. Performance Comparison of various SSL models

In Table 3, we evaluate the performance of various SSL models (and
Whisper encoder) across three tasks: TSE, SV, and speech separa-
tion. The models are trained with LibriSpeech data and LibriLight
[29]. Note that the difference between WavLM Base and Base Plus
is the amount of training data, i.e., WavLM Base is trained only with
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LibriSpeech 960 hours of training data, while WavLM Base Plus is
trained using the same data as WavLM Large, i.e., 94k hours.

First, let us look at the SV and separation performance. For
SV, we observe that MHFA outperforms Xvector with fewer param-
eters (Params: 2.31M v.s. 5.71M), suggesting its effectiveness. For
SV with MHFA, Large SSL models tend to perform best, except for
WavLM where WavLM Base Plus achieves significantly better per-
formance. For separation, WavLM Large outperforms other models,
and large SSL models constantly perform better than base ones.

Intuitively, we would expect that SSL. models achieving high
scores in terms of separation and extraction should be good for TSE.
However, we observe that there is a more intricate relation, e.g., Base
models usually perform better than Large models for TSE although
they perform worse in terms of SV and separation. Compared to
other SSL models, WavLM Base Plus achieves the best performance
for SV and TSE tasks. This suggests the importance of data augmen-
tation in the pre-training stage to capture robust speech and speaker
representations.

These experiments demonstrate that the performance of TSE
models is not directly correlated with their performance in Sepa-
ration and SV tasks. Moreover, as illustrated in Figure 2, the dis-
tributions for Separation and Extractor, as well as SV and SpkEnc,
are distinctly different. However, the two TSE sub-modules show a
similar pattern, which might be a result of their joint optimization.
This observation further emphasizes the uniqueness of TSE and the
necessity for task-specific evaluation of SSL models rather than as-
suming a universally effective model across various speech tasks.

3.4. Comparison with powerful TSE system

Finally, we compare the WavLM-based TSE system (hereafter called
SUPERB-TSE), with a strong TSE model, TD-SpeakerBeam [20].
First, Figure 3 compares the training speed of these two models.
The SUPERB-TSE system demonstrates faster convergence, achiev-
ing a 10 dB SI-SDR within 2-3 hours of training time, in contrast
to TD-SpeakerBeam, which requires over 10 hours to achieve sim-
ilar performance. Moreover, TD-SpeakerBeam reaches full conver-
gence in 100 hours, whereas SUPERB-TSE achieves this in only 14
hours. Moreover, as seen in Table 3, the failure rate is lower with
the WavLM-based TSE system (FR: 3.45 vs 4.85 %)), which may
indicate better speaker identification capabilities. However, despite
these benefits, there remains a significant performance gap between
SUPERB-TSE and TD-SpeakerBeam systems (SI-SDRi: 11.04 dB
v.s. 13.03 dB as shown in Table 3). We attribute part of this gap
to the very simple model architecture of the downstream model, as
well as to the low time resolution of the SSL model, which may not
be optimal for speech enhancement [19].

4. CONCLUSIONS

In this work, we introduce a novel SSL-based TSE aligned with SU-
PERB principles. Our comprehensive experiments on Libri2Mix
datasets demonstrate that TSE performance cannot be directly in-
ferred from SV and Separation tasks, justifying the importance of
including the TSE downstream task when probing SSL models. We
showed that with careful implementation choices, we can build a
relatively strong TSE downstream model, which achieves fast con-
vergence. However, such a simple downstream model still lags be-
hind more powerful TSE systems trained from scratch, such as TD-
SpeakerBeam. However, fine-tuning the SSL model for TSE as well
as enhancing the temporal resolution of SSL models, may constitute
promising research directions to boost TSE performance [19].
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