
This work was supported by the Ministry of Education, Youth
and Sports of the Czech Republic through the e-INFRA CZ
(ID:90254). This project has received funding from the European
Unions Horizon Europe research and innovation programme
under grant agreement No 101071008.}

MATLAB Interface To The afft Library

David Bayer1 and Jiri Jaros1

1Faculty of Information Technology, Brno University of Technology, 
Centre of Excellence IT4Innovations, CZ

1 Introduction and Motivation
Fast Fourier Transformation (FFT) and other related transformations are very demanding and time-consuming computations often 
used by scientists in various areas of research. In many cases, the MATLAB software is used to run the computations, however, 
MATLAB's support for these transformations is quite limited. This poster presents the MATLAB interface to the afft library that 
wraps a lot of existing FFT implementations on CPUs and GPUs, extending the support of FFT-like computations in MATLAB, while 
improving their performance.

2 How does it work?
The afft toolbox for MATLAB implements 
transformations via functions analogous to the 
MATLAB‘s native functions with extended functionality. 
Initially, when the toolbox is installed to the system, 
the functions are implemented in pure MATLAB, 
allowing the use right out of the box. The main feature 
is hidden in a separately compiled MEX function that 
implements the API calls in C/C++ using the afft library. 
This way the computation may be executed on CPUs 
and NVIDIA GPUs via the cuFFT, FFTW3, Intel MKL, 
PocketFFT or VkFFT libraries.

6 Current and Future Work
Next steps in the development are to 
• finalize the implementation including unit and module 

testing,
• deploy the toolbox to real world applications, e. g. k-Wave 

project, and
• fine tune the transformation libraries.

5 Conclusions
The afft toolbox is an alternative way to compute FFT-like 
transformations in MATLAB. In comparison to the native
implementations, it offers improved user’s experience, 
better performance and extra features. Due to the use of
the afft library, it is a flexible and powerful tool that can
support any target architecture and transformation
libraries. It is designed to be easily extensible of new targets
and transformations.

4 Supported functionality
All FFT-like transformations in MATLAB are implemented as 
transform1, transform2 or transformn functions which 
compute the transform in 1, 2 or N dimensions respectively. The 
afft toolbox implements this API to allow easy transition for 
already existing projects and extends its capabilities of new 
parameters such as normalization, strategy of the backend
library selection and others. Currently the supported 
transformations are:
• Discrete Fourier Transformation (DFT),
• Discrete Cosine Transformation (DCT),
• Discrete Sine Transformation (DST),
• Discrete Trigonometric Transformation (DTT) and
• Discrete Hartley Transformation (DHT).

>> Y = afft.transform(X);

+afft

transform.m

transform_native.m

afft_matlab.mexa64

+internal

3 The MEX function in detail
Similarly to system calls, each operation executed by the 
MEX function has its own call ID. The gateway of the MEX 
function parses the call ID and passes the input and output 
arguments to the processing function. The processing 
function parses all of the other inputs, creates the afft plan 
of the transformation, executes the plan and stores the 
results in the output array. The created plans are put into a 
LRU cache to reduce the plan initialization time.

Has
afft_matlab

.mexa64?

No

Yes

>> out = afft_matlab(callId, varargin{:});

mexFunction(out, in)

Parse call ID Execute call

Parse input arguments Create afft plan Execute the plan Store outputs

MATLAB afft toolbox
1D 2D ND 1D 2D ND

DFT x x x x x x

DCT x x x x x x

DST x x x x

DTT x x x

DHT x x x

The library also provides a Plan class that can be configured to run any of the transformations with slightly lower overhead 
compared to the function style execution.


	Snímek 1

